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ABSTRACT 
Although a large number of users are using P2P systems, the 
ability of these systems to provide services with quality is 
questioned. A load balanced P2P system can provide services 
with smaller failure rate and better performance; hence, service 
quality of the system can be improved. Cluster systems have been 
adopted for services which are tolerant to faults. Although a 
cluster structure improving the reliability and robustness of a P2P 
system, the load unbalancing problem still remains because of the 
heterogeneities of nodes and requests. Existing dynamic load 
balancing mechanisms in P2P systems require extra connections 
and overhead on aggregating the load status from the nodes. We 
propose diffusive load balancing in a clustered P2P system, where 
a global balance is achieved through balancing the neighborhoods 
of all clusters within the existing overlay network. We simulated 
three load balancing schemes: directory-initiated, sender-initiated, 
and receiver-initiated; from an initially unbalanced situation, the 
results show that diffusive load balancing can achieve a global 
balance comparable to a centralized directory scheme, and the 
distributed directory-initiated scheme provides better results than 
the sender- or receiver-initiated schemes.  

 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: design studies; C.2.4 
[Distributed Systems]: Distributed application. 

General Terms 
Design, Management, Performance 

Keywords 
Load balancing, diffusive load balancing, peer-to-peer systems, 
distributed algorithms, dynamic resource allocation, performance 
management, server clusters, clustered peer-to-peer systems 

 

1. INTRODUCTION 
A Peer-to-Peer (P2P) system is a form of distributed computing 
system with computer nodes located in the Internet. Normally, a 
P2P system can be decomposed into two layers: the overlay 
network layer and the application layer. The former connects all 
nodes and provides lookup function to locate nodes; the latter 
performs the actions of an application, for example, file 
downloading in a file system, or stream delivery in a video 
system. Figure1 shows a P2P file downloading path between two 
peers in a file sharing application with its overlay layer network 
and the Internet below. 

 

    

Figure 1. An example of a file downloading path in a file 
sharing P2P application 

The overlay network of a P2P system can be constructed using a 
structured or unstructured architecture. An unstructured 
architecture randomly connects nodes, and the network is resilient 
and robust to node failures; but, lookup messages for finding 
objects are broadcast which takes a large amount of message 
transmissions and time. A structured architecture associates nodes 
according to the associations of objects stored in them; lookup 
messages are routed among nodes according to their associations, 
and objects are located with a relatively low message and time 
complexity, e.g., O(logN) in Pastry and Chord, where N is the 



 

number of nodes; )(
1

ddNO in CAN, where N is the 
number of nodes, and d is dimension for the torus of a CAN; but, 
the network takes some time to reach a stable state when nodes 
leave and join the network.    

The characteristics of P2P systems are studied mainly for better 
understanding them and further improving their performance. 
Measurements from systems in the real world, e.g. KaZza, 
Gnutella, and PPLive, show that, millions of nodes could 
participate in an overlay network at a time, and they randomly 
join and leave the network. These nodes have heterogeneous 
capacities of resources: processing power, storage space, and 
bandwidth; also, the shared objects in the system, i.e., files and 
videos, have different popularities, and the popularity of a shared 
object changes with time. These heterogeneities cause load 
unbalancing among nodes in a P2P application, which results in 
some requests experiencing long latency while some nodes are 
idle.  

One major issue in a P2P system is the dynamics caused by nodes 
leaving and joining the system without any notice. Because of this 
dynamics, called churn, the quality of service provided by overlay 
networks and applications is not guaranteed; they could 
experience long delays, or even failures.  

Cluster systems have been adopted for services which are tolerant 
to faults. When a node fails, the service is still available at other 
nodes in the cluster. A cluster structure improves the reliability 
and robustness of a P2P system, e.g., eQuus system [1]. Also, in a 
cluster system, a consistency protocol can be integrated with a 
group membership protocol, such that it maintains consistency of 
replicas while the cluster is prone to node failures and recoveries 
[2], [3]. From the point of view of replica management, in a 
clustered P2P system, all objects stored in the nodes of a cluster 
can share one group membership mechanism for managing their 
replicas; this limits the overhead required for maintaining 
consistency of replicas.   

We study load balancing in such a clustered P2P system. 
Although, nodes have been clustered in this system, the 
heterogeneities of nodes and requests still exist. We proposed 
that, loads are balanced among clusters through moving nodes 
from lightly loaded clusters to heavily loaded clusters. Installing a 
load balancing mechanism, the system will have better overall 
performance. Furthermore, with a load balancing mechanism, 
clusters can be dynamically resized according to their load 
statuses. 

We propose to apply diffusive load balancing in a clustered P2P 
system. Similar to an energy diffusion procedure, with diffusive 
load balancing, a node balances its load only with nodes directly 
connected to it. These directly connected nodes compose a local 
domain for the node. A global balance can be achieved through 
the balance at all of the local domains. As a diffusive load 
balancing policy has a small amount of overhead, and it is 
scalable when the size of a system increases, it is suitable to be 
applied in a P2P system. To apply diffusive load balancing, a 
network must cover all nodes, and local domains must overlap. A 
cluster P2P system satisfies these conditions. Our diffusive load 
balancing moves nodes from heavily loaded clusters to lightly 
loaded clusters in the clustered P2P system; loads at these clusters 
related to the total capacity of their resources are changed. In this 

way, heavily loaded clusters would have more capacity to satisfy 
their requests, and the service quality is improved.    

We present general background regarding load balancing schemes 
in Section 2. In Section 3, we introduce a clustered P2P system: 
eQuus, on which we base our simulation. In Section 4, we 
describe our diffusive load balancing procedure according to their 
policies and four phases; also, we propose a design of components 
running this procedure. In Section 5, simulation results are 
discussed from the comparison of loads distribution before and 
after the running of a load balancing procedure; the differences of 
these schemes under different policies and system parameters are 
discussed as well. In Section 6, we conclude the paper.   

2. Background 
Load balancing is “the problem of allocation: of mapping and 
remapping” workload to “the physical system” [4]. On one side, a 
load balancing scheme determines when and where to move the 
load; on the other side, the architecture of a node organization in a 
load balancing scheme determines how nodes communicate and 
migrate loads for the purpose of load balancing.  

2.1 Load balancing schemes 
According to its load balancing scheme, a distributed system 
moves workload from heavily loaded nodes to lightly loaded 
nodes to improve its overall performance [5]. The heavily loaded 
node is a sender of load, and the lightly loaded node is a receiver. 
A load balancing scheme is a combination of policies. The 
policies specify when and where to migrate load for the purpose 
of load balancing or sharing. Policies can be classified as follows 
[6]:  

• Transfer policy: decides whether a node is suitable to 
initiate a load movement; either as a sender or as a 
receiver.  

• Location policy: determines another participant in the 
load movement after the Transfer policy has decided a 
movement. 

• Information policy: specifies when and how to collect 
system state information. 

• Selection policy: specifies which load should be 
transferred in a load movement.  

Static load balancing scheme: With a static scheme, loads are 
distributed from senders to receivers through deterministic splits 
in a random portion or cyclic manner. A static scheme is simple to 
implement with no effort in collecting system state information 
and easy to achieve with little overhead. However, this scheme 
works perfectly only in a homogenous system, where all nodes are 
almost the same, and all loads are the same as well. A static 
scheme can hardly catch up and react to the dynamics caused by 
heterogeneity.  

Dynamic load balancing scheme: A dynamic scheme makes 
decisions based on the system status at the current or recent 
moment. According to system status information, a node can 
decide to be a sender or a receiver through a Transfer policy, and 
can decide the peer through a Location policy. A Selection policy 
selects a load to be transferred, i.e. small tasks vs. large tasks, or 
tasks in waiting state vs. those in running state. Dynamic schemes 
result in better performance when its nodes of the system have 



 

heterogeneous capacities of resources, and loads come to the 
nodes in a random manner.  

2.1.1 Architecture of dynamic load balancing schemes  
Nodes can be organized in different manners for collecting load 
information and making load balancing decisions. The typical 
architectures can be classified into centralized, distributed, and 
topological.  

In a centralized architecture, a central server receives load status 
reports from the other nodes, and senders ask the server to find 
receivers for them [7]. Although, systems perform best with this 
scheme: tasks obtain the lowest mean response time within a 
narrow range, it is not scalable because the management workload 
for reporting system status information to the central point 
increases with the size of the system. Furthermore, a central 
information center could be a performance bottleneck and a single 
point of failure of the system.  

In a distributed scheme, each node has a global or a partial 
knowledge of the system status, and it can locally decide to start 
transferring a load either into it or out from it. A node could 
broadcast its node status periodically through out the system [7], 
[8], or, only when its state is changed [8]. In a distributed scheme 
with probing policy, when its local status is changed, a node 
probes part of the nodes in the system and makes decisions based 
on the received responses. Sender-initiated or receiver-initiated 
are the two major schemes. With a probing scheme, a sender or 
receiver could find its peer through probing a limited number of 
nodes [9].  

Schemes with topological architectures are proposed for systems 
with a large number of nodes. In schemes with group partitioning 
[10], [11], and [12], nodes can be partitioned into groups, and 
load balancing will be performed in each group first, then, a 
global balancing will be performed when loads are unbalanced 
among groups. In a scheme with hierarchical architecture [13], 
nodes are organized into a tree hierarchy, and inner nodes will 
aggregate the status information of its sub-trees; load balancing is 
performed from the leaves to the root of the tree through the 
indication of aggregated status information at inner nodes.  

2.2 P2P load balancing 
Load balancing techniques in P2P systems are facing challenges 
coming from the characteristics of these systems. First of all, the 
size of a P2P system is large, which means that a load balancing 
technique applied to it must be scalable. Second, unlike 
traditional systems, nodes of a P2P system are not replicas and 
requests can not be executed in any node. Alternatively, P2P 
systems place or re-place shared objects optimally among nodes, 
and overlay routing tables would redirect requests of these shared 
objects to the right nodes; as a result, the load of the P2P system 
can be balanced. Combined with techniques of dynamic load 
balancing, object placement and node placement are two types of 
load balancing techniques used in P2P systems. 

In object placement techniques, objects are placed at lightly 
loaded nodes either when they are inserted into the system [14] or 
through dynamic load balancing. In the latter, objects can be 
stored in virtual servers and moved from nodes to nodes. [15, 16 
and 17] adopted a distributed directory approach similar to a load 
balancing scheme with partitioned group architecture. Each node 
reports its node status to a directory, and load of nodes is balanced 

in each directory. In order to globally balance the system, a node 
registers to one of the directories of the system; after it stays there 
for a duration, it will leave the directory and register another one 

in turn.  [18] proposed a aryk −  tree architecture for load 
balancing; where the inner nodes and root of the tree aggregate 
load statuses of their sub-trees, and the root disperses the average 
load status of the system to all nodes down the tree. Accordingly, 
each node can dynamically identify its relative load situation. In 
this kind of hierarchical architecture, load can be balanced from 
the leaves to the root according to the aggregated load information 
at inner nodes.  

In node placement techniques, nodes can be placed or replaced to 
locations with heavy load. For example, the Mercury load 
balancing mechanism moves nodes from lightly loaded data 
ranges to heavily loaded ranges [19]. Nodes are connected into a 
ring, and each node periodically samples the ring with a random 
walk, which selects nodes from the routing tables as next hops. 
According to an estimation value based on samples, a node is able 
to detect a lightly loaded range, and move there if it is overloaded.  

[20] proposed a load balancing mechanism that combines both 
object placement and node placement in a P2P system. Nodes are 
connected with a linear link, and each node balances its load with 
its two consecutive neighbors. If a node has balanced its load with 
its neighbors already, and it is still overloaded, it will select a 
lightly loaded node among all nodes in the system to hand over 
some of its loads. Before moving, the lightly loaded node will 
shed all its loads to its own consecutive neighbors. The load 
balancing operations occur when a data object is inserted or 
deleted, and nodes are connected through an extra skip list 
according to their load information on top of the overlay; this 
requires frequent updates of the skip list when the load situation 
changes.  

2.3 Diffusive load balancing 
In a diffusive load balancing technique, a heavily loaded 
component sheds portion of its load to any of less loaded 
components in its local domain; including the portion left itself, 
the total portions can not exceed 1. A diffusive load balancing 
technique has a scheme with three aspects [21]: each component 
individually performs load balancing; load balancing is achieved 
locally in the domain of a component; each local domain partially 
overlaps with other local domains, and, components of the whole 
system must be covered by domains. From these aspects, we can 
see that diffusive load balancing policies are simple, where 
messages for collecting statuses and load migration are only 
transferred in a local network; also, they are efficient on achieving 
global balancing with a small amount of message overheads.  

Diffusive load balancing policies can be classified according to 
their specifications in two aspects: decision and load migration. 
While making a decision, the components evaluates its local state 
through collecting load statuses from other components in its 
domain; with a sender-initiated policy, after evaluating itself as 
overloaded, it initiates a load migration to a receiver in its local 
domain; with a receiver-initiated policy, the component will 
initiate a load migration if it is under-loaded. Also, a component 
could decide senders and receivers in its domain and initiate load 
migrations among them [distributed]. Load can be migrated from 
an overloaded component to less loaded components in its local 
domain, or to components in the global domain. In the latter case, 



 

a path is first located from a sender to a receiver, and then load is 
forwarded along the path through the intermediate nodes. While 
load is migrated, a component is only allowed to participate in 
one action, either sending or receiving, which prevents it from 
receiving or shedding loads multiple times at the same time. After 
one round running of decision and load migration, the component 
will reach a local balancing state. 

In research of diffusive load balancing, balancing is measured 
through the difference between loads of each component and the 
average load of the whole system. When the difference is a small 
value, e.g. 0.01, the system is said to be balanced. The research on 
convergence studies whether the given load balancing policy can 
finally balance a system by a limited number of rounds of local 
balancing, and how fast this convergence can be, i.e. the rate of 
convergence. It has been proved that a diffusion load balancing 
policy can converge in a homogeneous system [22]; this was 
generalized to heterogeneous systems in [23]. After each run of 
the iteration, the difference becomes smaller; a boundary of 
number of iterations exists for the difference reaching the limit. 
Networks with different topologies were studied, such as: torus, 
grid, and hypercube. In a system of a d-dimensional hypercube, a 
policy can converge in d+1 iterations. These load balancing 
policies are also studied under the environment where loads 
dynamically arrive to nodes.  

These policies are mainly studied for massively parallel systems, 
e.g., distributed memory multiprocessor system, or parallel 
processing system, whose processors are tightly connected to 
provide high speed computing power. In these systems, the 
number of components could be as large as thousands; however, 
the domain of neighbors for each component is small. These 
systems adopt diffusive load balancing policies to fully use the 
capacity of their resources and further speed up computations 
without the managing of a central controller.  

3. eQuus 
As our load balancing will be based on an eQuus system, we 
introduce it here. eQuus is a structured P2P system based on 
clusters, where its nodes are organized into clusters according to a 
proximity metric, and its DHT is constructed among these 
clusters. The proximity metric could be the geographic distance, 
or the network distance in the Internet which is measured in 
number of hops. Unlike other DHT systems, each cluster is 
identified by a unique ID. Also, the routing tables are constructed 
based on these IDs. There are up to k nodes belonging to the same 
cluster pointed to by an entry of a routing table. A node can select 
a node from these k nodes to route a lookup message. Meanwhile, 
the shared objects belonging to a cluster are replicated among all 
nodes in that cluster.  

eQuus has a routing algorithm similar to Pastry, which forwards a 
lookup message according to prefix matching. Unlike Pastry, a 
node resolves a lookup message by checking if the hash key of the 
lookup is located in the range between the ID of itself and its 
successor. If this is true, the node returns itself as the final results. 
Otherwise, the node will forward the lookup message to the next 
hop according to its routing table. The number of steps of a 
lookup procedure is bound by O(logN), where N is the number of 
clusters in the eQuus. 

Nodes in an eQuus system have two levels of connections: intra-
cluster and inter-cluster. At the intra-cluster level, a node connects 
with all other nodes in the same cluster. At the inter-cluster level, 
a node has connections with k  nodes in each neighbor cluster 
included in the routing table, which provides k  redundancy for 
the lookup forwarding, as well as for the application services on 
top of the DHT overlay. Each node also stores connections to up 
to k  nodes in its predecessor and in its successor clusters. During 
a lookup procedure, the probability that all k  nodes of an entry 
would disappear at the same time is very low.  

In addition to the operations in regular DHT systems, an eQuus 
system provides two extra operations dedicated to clusters, one is 
splitting and another is merging.   

• Splitting: When a new node joins the eQuus system, it 
joins a cluster which is the closest to it on the chosen 
proximity metric. Its joining only changes the 
membership of this cluster. When the size of the cluster 
reaches an upper limit, the cluster will start a splitting 
operation, where half of the nodes will be in a new 
cluster, and another half will stay in the original cluster. 
The new cluster takes over half of the hashed keys 
which are close to the predecessor of the original cluster 
on the ring. Also, it is identified by an identifier in the 
middle of two original identifiers. The new cluster 
updates entries of its routing table by searching for them 
in the overlay.  

• Merging: When the size of an eQuus cluster reaches a 
lower bound, the cluster will start to merge with its 
predecessor, where all of its nodes join its predecessor, 
and its own cluster ID disappears. After merging, the 
resulting cluster takes over all of hash keys of both 
clusters. Also, the clusters having the merged cluster as 
an entry in their routing tables will be notified for its 
departure.  

With this architecture, only when node joining or leaving 
accumulate to a certain degree, clusters will experience merging 
or split, and connections associated with these clusters will be 
updated. From this point of view, an eQuus is robust and resilient 
to churn.  

4. Diffusive load balancing for a clustered 
P2P networks 
The load balancing in a clustered P2P system has two levels: 
intra-cluster, i.e., loads among nodes in a given cluster are 
balanced, and inter-cluster, i.e., loads among different clusters are 
balanced. As research has already intensively studied intra-cluster 
load balancing, we propose to apply diffusive load balancing in 
the system at the inter-cluster level based on the assumption that 
intra-cluster load balancing has been implemented inside each 
cluster.  

We adopt node movements instead of object movement for load 
balancing. Without virtual servers, load balancing through 
moving objects can only be realized between consecutive clusters 
in the clustered P2P system; in this way, diffusive load balancing 
would converge only slowly. With load balancing through moving 
node, the overhead of maintaining data consistency among a large 



 

number of nodes in different clusters for moving objects, and the 
updating of routing tables in the network is avoided.   

4.1 Choice of the load index: available 
capacity 
A dynamic load balancing scheme identifies the system status 
according to a load index at each node; a load index should 
correctly reflect the amount of loads at a node, and from this 
index, the performance of a node could be evaluated. It has been 
reported that the choice of a load index has a large effect on the 
performance of a system [24]. CPU queue length is generally 
preferred as a load index [25, 7, and 24] because it has a strong 
correlation with the mean response time of tasks at the node. 
Other load indexes include utilization, request-response time, 
available capacity.  

The utilization of nodes can be used as load index in a 
homogeneous system where the maximum capacities of the nodes 
are the same: when two nodes have the same utilization, their 
request-response times are the same. However, this is not the case 
in heterogeneous systems. CPU queue length can be used in 
heterogeneous systems; but it is particularly suitable for load 
sharing which uses static thresholds to determine whether load 
should be exchanged. Request-response time is used on 
dispatching requests among nodes by load sharing scheme as well.  

We adopt the available capacity of a node as the load index of our 
load balancing scheme. It has been proposed in [27] for balancing 
CPU and disk storage usage in a digital library. Also, [28] uses a 
metric derived from available capacity to balance bandwidth 
usage in a network during the routing of service requests.  

We use a M/M/1 queuing model to show that, the average 
response time at a node is the reverse of the available capacity of a 
node; this means that, when two nodes have the same available 
capacity, even if they have different maximum capacities, the 
mean response times for a given request will be the same at those 
two nodes. We use the notations in [26] to derive the equation (1), 
where we have the average response time ][rE , the service rate of a 
node µ , the arrival rate of a node λ , and the utilization of a 
node ρ . As the service rate of a node is the maximum number of 
requests it can process per time unit, and the arrival rate is the 
number of requests that are processed per time unit, we can say 
that the maximum capacity of a node is its service rate, and the 
used capacity is its arrival rate; as a result, the utilization of a 
node, which is the ratio of λ  and µ , becomes the ratio of its 
used capacity to its maximum capacity.  We have  

  ][rE = 1 / (µ – λ) = 1 / (MaximumCapacity – UsedCapacity)  
             = 1 / AvailableCapacity         (1) 

Because of this directly relationship between the response time 
and the available capacity, we use the latter as load index. Since 
we assume that the nodes in a cluster are load-balanced, we may 
also assume that they have all the same available capacity within a 
given cluster. With inter-cluster load balancing, the available 
capacities of the nodes in all clusters will be close to their 
average. We do not differentiate requests into multiple classes 
here.   

We can calculate the available capacity of a node with equation 
(2) after determining its maximum capacity by benchmark tools 

and its utilization by performance measurements. Then, the mean 
available capacity of the nodes in a cluster is the load index of the 
cluster; by this load index, load balancing procedure will make 
decision on node movement, and consequently, the load indexes 
among clusters will be changed in the direction to approach the 
system average. 

AvailableCapacity = MaximumCapacity * (1 – utlization)        (2)                                                                                                                                                                                        

4.2 Diffusive load balancing mechanisms 
among clusters 
Using available capacity as load index, each cluster iteratively 
runs a diffusive load balancing procedure which identifies the 
state of its own as well of its neighbors, and makes decisions 
concerning possible load movements with these neighbors. We 
consider three schemes here: directory-initiated, sender-initiated, 
and receiver-initiated; they differ in their Location policy. We use 
the traditional meaning of sender and receiver here: a sender is a 
node will transfer its load out, and a receiver will transfer load in. 
In the directory-initiated scheme, when a cluster runs the 
procedure, it locates the senders and receivers among its 
neighbors; with sender-initiation or receiver-initiation, it locates a 
receiver only when it is sender or a sender only when it is 
receiver, respectively.  

We describe in the following the diffusive load balancing 
procedure in terms of four phases:  

• LB triggering: the execution of a load balancing 
procedure is triggered by a timeout event or a state 
change event in a cluster. There is a time duration 
between two consecutively runs of the procedure, and 
this duration is pre-configured. The procedure is also 
activated when a cluster changes its state, either to be a 
sender or to be a receiver.  

• Load determination: First, the cluster determines its 
own load status as well as the load status of its 
neighborhood through sending probing messages to its 
neighbors, and waits for responses from them; a probed 
cluster responds with its load index.  

• Decision: A parameter, called bound, is used to 
determine whether a cluster is considered overloaded or 
under-loaded. First the load average is calculated for all 
the clusters in the neighborhood. Then the upper and 
lower load thresholds are calculated by the formula: 
threshold = average-load-index * (1 +/- bound). The 
bound is given in percentage of the average load. A 
cluster is a candidate receiver (sender) of load if its load 
index is smaller (larger) than the lower threshold. The 
purpose of the decision procedure is to identify one or 
several receiver-sender pairs and send a load transfer 
request to the receiver of each pair, including as 
parameters the ID of the selected sender (which is the 
target for the node movement) and the amount of load it 
requires to reach the load average (called required 
capacity). The details of the decision procedures 
depends on the Location policy: 

          Directory-initiated: the cluster identifies one or several 
receiver-sender pairs, as appropriate.  



 

  Sender-initiated: if the cluster is a sender, then it tries 
to identify a corresponding receiver in its neighborhood.    

   Receiver-initiated: If the cluster is a receiver, then it 
tries to identify a corresponding sender in its 
neighborhood. 

• Load transfer: After a receiver cluster receives an 
instruction of node movement, it will select nodes from 
its own, delete them from its membership list, and let 
them join the sender cluster. It is important that the 
node movement should not cause the state of these 
clusters to be changed to the opposite, e.g., an under-
loaded cluster becomes overloaded, or, an overloaded 
cluster becomes under-loaded. A receiver can only 
transfer out the portion which is over the mean, and we 
call it transferable capacity; in order to avoid this 
situation, the transferred portion should be close to the 
smaller one of the required capacity and the transferable 
capacity.   

5. Simulation and Discussion 
We have built a simulation program for evaluating the 
performance of the diffusive load balancing procedures described 
above. Also, we compared them with a central directory scheme, 
where a single directory collects status information of all clusters 
in the system and makes inter-cluster load balancing decisions 
using the same kind of decision criteria based on mean and 
threshold values. As we are interested in the differences between 
these different policies, such as their rates of convergence, the 
effect of the threshold parameters and the impact of churn, we 
have not taken into account the time and cost of message 
transmission and node movement (at the current stage of our 
studies); in our simulation, the LB procedures of the different 
clusters work sequentially in a random order. We also assume that 
the capacity lost during node movement is negligible. 

In our simulation study, we assume that a cluster has its own 
intra-cluster load balancing and the load indexes are the same at 
all of its nodes. To show the speed of load balancing convergence, 
we assume in our simulation an initially unbalanced load 
situation, were the total available capacity of different clusters is 
uniformly distributed from the lowest value: 0 to the maximum of 
a cluster. Hence, the load index of a cluster can be derived from 
dividing its total available capacity by the number of its nodes. 
We study the system with fixed (but heterogeneous) traffic loads 
for the different clusters and we assume that the nodes within a 
cluster have the same maximum capacity (10) here; heterogeneous 
node capacities are considered below. Figure 2(a) is an example 
of the histogram of load among clusters before load balancing, 
where the load indexes of the clusters are distributed between 0 
and 10.  

For the purpose of measurement, we insert time points into the 
simulation, and the time duration between two consecutive points 
is a measurement round; in one round, each cluster runs the load 
balancing. In a LB decision phase, a cluster could identify its 
neighborhood as balanced according to the criteria listed in 
previous section; in this case, no node movement would occur. 
When there is no node movement among all neighborhoods in the 
last round, the system is said to be globally balanced and the 
simulation will be stopped. In the real system, the LB procedure 

will run from time to time to handle the possible unbalancing of 
the system.  

5.1 Load balancing with homogeneous 
nodes 
We display the histogram of the load index among clusters after 
running of LB procedure in Figure 2. The system has 10,000 
nodes; the average size of a cluster is configured as 8 (the number 
of nodes in a cluster then ranges between 4 and 16 under the 
organization of eQuus), and the load balancing bound is 
plus/minus 20% of the mean. Figure 2 (b) – (e) show the results of 
these four schemes. The figures show the number of clusters as a 
function of the load index when the system got into the balanced 
state (as defined above). Except the receiver-initiate scheme, these 
schemes balance the load tightly around the mean, and especially, 
there is no heavily loaded cluster in the system. The directory-
initiated scheme has a histogram similar to the central directory 
scheme, where there is a spike existing near the mean; with the 
sender-initiated and the receiver-initiated schemes the load index 
of the clusters is more spread between the lower and upper 
thresholds. In the receiver-initiated scheme, a cluster makes 
decision on node movement only when it identifies itself as a 
receiver. In the case that a cluster is not a receiver, node 
movements will not occur in its local domain, even when there are 
overloaded clusters in the domain. This is the reason why with the 
receiver-initiated scheme some under-loaded clusters remain.    
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Figure 2. The histogram of loads among clusters before load 
balancing (a), and after load balancing, (b) central directory, 

(c) directory-initiated, (d) sender-initiated, (e) receiver-
initiated 

 

From Figure 2, we can see that all these schemes can globally 
balance the load indexes among clusters in the system through 
balancing their neighborhood. Next, we give some numerical 
results about these schemes. Table 1 provides a comparison for 
the standard deviation (std. dev.) of the load index, the delta of the 
load index which is defined as: (mean – minimum)/mean * 100%, 

the rounds of running a scheme to achieve global balancing, the 
total number of node movements, and the number of splits and 
merges that occurred during the balancing procedure. These 
values are the average taken from ten experimental runs for 
different bounds and different decision policies.  

Table 1. Comparison of load balancing results 
20% 50%  

CD DI SI RI CD DI SI RI 

Std. dev. 1.033 0.709 0.915 1.098 2.23 2.028 2.176 2.13 

Delta. (%) 19.63 19.28 25.14 62.3 49.92 47.95 57.34 66.18 

rounds 4.3 1.1 3.1 4.9 3.5 1.5 2.7 3 

Node mv. 1680 1942 1695 2013 606 758 581 713 

splits 180 219 200 210 63 85 68 76 

merges 81 126 123 81 7 33 35 7 

CD: central directory, DI: directory-initiated, SI: sender-initiated, 
RI: receiver-initiated 

With different bounds configured in the LB decision phase, they 
are all able to balance the load indexes to the mean; however, they 
have different results. The central directory scheme is an ideal 
scheme where the delta of the load index is most close to the 
bounds in both cases; meanwhile, it reaches the balanced state 
with smaller number of node movements. A larger bound causes a 
larger delta of load indexes; in this case, schemes can approach 
the balancing state fast, i.e., the number of rounds to be balanced 
with a bound of 50% is less than that for a bound of 20%. 
Compared with other schemes, the directory-initiated scheme 
spends less rounds but has more node movements for balancing 
the load indexes with a smaller delta, which indicates that its fast 
convergence is based on more load balancing decisions and node 
movements. The values of the table confirm the exception of the 
receiver-initiated scheme, already indicated in Figure 2, for which 
the minimum load index is further away from the maximum; 
furthermore, the receiver-initiated scheme uses more rounds.  

5.2 Impact to Churn 
The load balancing procedure causes node movements and 
introduces extra churn into the system. Churn impacts this peer-
to-peer system at two levels: intra-cluster and inter-cluster. At the 
intra-cluster level, the departure of an existing node or the arrival 
of a new one only impacts the cluster membership management. 
At the inter-cluster level, such changes may cause the split and 
merge of some clusters; in which case the routing tables of the 
clusters must be updated. The frequency of splits and merges is 
related to the frequency of arrival and departure of nodes, and also 
the average size of the clusters. The node movements due to load 
balancing have a similar impact at the intra- and inter-cluster 
level.  

In order to understand the dynamics of our load balancing 
schemes, we display in Figure 3 the number of node movements 
(a), the number of splits (b), the number of merges (c), the 
standard deviations of the load index (d), and the delta between 
the minimum and the mean load index (e) as a function of the 
number of rounds. The simulator is configured with the same 
parameters used in Figure 2. 

Initially, the load indexes at clusters are dispersed in the range 
from (0, 10) as seen in Figure 2(a) with large standard deviations 
and deltas. During each round of the load balancing procedure, 
the standard deviation and delta of the load indexes become 



 

smaller; in fact, most of the changes occur during the first round. 
The directory-initiated scheme makes 99% of its node movements 
during the first round; while the sender-initiated and the receiver-
initiated schemes only move about 90%. Also, the directory-
initiated scheme reduces the delta most quickly during the first 
round (Figure 3(e)). Most splits and merges (Figure 3(b) and 3(c)) 
of clusters occur during the first round, corresponding to the large 
portion of node movements (Figure 3(a)). After the first round, 
there are still some node movements, and changes of the load 
indexes can be observed from Figure 3(d) and 3(e). 

If we associate the load status at each round in Figure 3 with the 
load state of the system, the initial status could be seen as an 
extremely unbalanced state and the final status as balanced. Figure 
3 is also a picture showing the migration of system from the 
unbalanced to the balanced state.  
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Figure 3. The status of the system at the end of each iteration 
round: (a) number of node movements, (b) number of splits, 

(c) number of merges, (d) standard deviation of load index, (e) 
delta between the minimum and the mean load index  

5.3 Load balancing with heterogeneous 
nodes 
As the nodes in a P2P system have heterogeneous capacity, the 
Selection policies of the load balancing schemes should be 
modified: when a scheme selects a node for a receiver, it should 
considers the required capacity for the sender to reach the mean 



 

load index, and pick a node to be transferred having a maximum 
capacity close to it; we call this a policy with capacity 
consideration. Through such a policy, the number of node 
movements to achieve the balanced state would be reduced.  

We have configured the simulator with nodes having capacities in 
the range [10, 5000] with a Pareto distribution shape as 2, and 
scale as 100 [16]; the other parameters are the same as for Figure 
2. Table 2 shows the load balancing results of these two different 
selection policies: (a) policy with capacity consideration and (b) 
with random selection of nodes. As the directory-initiated scheme 
works best among these diffusive load balancing schemes, we 
only compare it with the central directory scheme in this and the 
next subsections. 

We see from Table 2 that the trends observed in a homogeneous 
system remain present in heterogeneous systems, e.g., the 
directory-initiated scheme uses a smaller number of rounds to 
reach a balanced state with more node movements; the receiver-
initiated scheme is left with some overloaded clusters when the 
load balancing procedure stops. Furthermore, the number of node 
movements is reduced with capacity consideration, as compared 
with random node selection. For instance, in the directory-
initiated scheme, the movements are reduced by 20%. This 
indicates that selecting a node with its maximum capacity 
matching to the required capacity is superior to randomly 
selection.  

Table 2. Comparison of load balancing results with random 
and capacity consideration policy 

random Capacity  

CD DI CD DI 

Std. dev. 5.98 4.5 5.5 4.37 

Delta. (%) 19.45 20.56 19.92 19.5 

rounds 4.8 1.6 4.4 1.6 

Node mv. 1722 2011 1204 1645 

split 182 213 128 181 

merge 90 119 28.4 83 

CD: central directory, DI: directory-initiated 

5.4 Impact of cluster size to LB results on 
churn 
As the load balancing procedure causes churn (i.e. node 
movements) in the system, we compare in Table 3 the 
performance of the load balancing procedure in systems with 
different average cluster sizes. In a system with large cluster sizes, 
the probability that a given node movement leads to a split or 
merge of clusters is smaller than in systems with smaller cluster 
sizes. Therefore we expect that load balancing is more effective in 
systems with larger average cluster sizes.  

Table 3 shows a comparison for three average cluster sizes. The 
simulation is based on similar parameters as for Table 2 with 
heterogeneous capacities and node selection based on capacity 
consideration; in this case, the simulation is more closed to the 
real world. The data are aggregated from 10 experiment runs. We 
see that for systems with larger cluster sizes the number of node 
movements is reduced, and the numbers of splits and merges 
relative to the total number of cliques in the system are also 
reduced. The table shows that there are fewer merges happened 
during the running of the load balancing procedure. A cluster 

merges itself with its consecutive cluster when its size reaches a 
lower limit. When the load balancing procedure runs, it reduces 
the loss of the capacity due to departing nodes (churn) through 
moving nodes from other clusters. From this point of view, the 
load balancing procedure is counter-balances churn. Since we 
have run our simulation without churn, we have not explored this 
benefit of load balancing. This point requires further study with a 
dynamic scenarios including churn.  

Table 3. Comparison of network dynamics for different 
average sizes of cliques  

8 16 32  

CD DI CD DI CD DI 

Delta. (%) 19.92 19.5 19.92 18.5 19.94 19.1 

rounds 4.4 1.6 3.9 1.4 3.9 1.4 

Node mv. 1204 1645 1001 1323 940 1168 

Split (%) 14.1 20.0 12 17.13 9.8 14.3 

Merge (%) 3.14 9.1 1.5 5 1.5 2.93 

CD: central directory, DI: directory-initiated 

6. Conclusion 
Load unbalance in a P2P system is caused by the heterogeneities 
of node capacities and the popularity of their services. Also, churn 
(dynamic node arrival and departure) could change the load 
distribution among nodes and introduce randomly unbalanced 
situations. In a clustered P2P system, the arrival and departure of 
nodes changes the capacity of the clusters and affects the 
performance of the services they provide. In order to remediate 
the unbalanced load situations, due to any reason, we propose to 
move nodes from clusters with low load to clusters with high load 
in order to equalize the load situations of the clusters in the P2P 
system. It is clear that some kind of overhead can not be avoided.    

[16] proposed a distributed directory architecture for load 
balancing in a P2P system; however, this induces extra network 
connections from nodes to directories. [18] proposed a tree 
hierarchy for aggregating resource information and managing 
resources; but this introduces extra overhead for maintaining the 
tree. Diffusive load balancing [21] simplifies the procedure by 
achieving a global balance through local balancing procedures. It 
does not require extra management connections and maintenance 
infrastructure; this improves the efficiency of resource 
management in P2P systems. In the diffusive load balancing 
scheme described in [20], the nodes are organized as a linked list 
and a node balances its load with its two consecutive neighbors. 
In order to increase the speed of global convergence, a skip list is 
introduced to maintain load information about nodes in other 
parts of the linked list; but this introduces extra overhead for 
managing the list.     

Our diffusive load balancing procedure for clustered P2P system 
is similar to [20]. However, it uses all those clusters that are 
included in the routing table as neighborhood of a given cluster. 
Because of the hierarchical structure of the routing tables, this 
includes clusters throughout the cluster naming space; therefore 
we get relatively fast global convergence. The other advantage is 
that we can directly use the neighborhood structure provided by 
the existing P2P overlay structure, which reduces the overhead.  



 

Our diffusive load balancing procedure equalizes load among 
clusters based on the available capacities of their nodes, which is 
taken as our load index. Since the available capacity is directly 
associated with the mean response time of a node, a system load-
balanced based on available capacity has a uniform response time.  

Our simulation compares the performance of four different load 
balancing schemes: a scheme using a centralized directly and 
three distributed schemes with different decision policies: 
directory-initiated, sender-initiated, and receiver-initiated. Our 
simulation results show that the directory-initiated policy is the 
best distributed decision policy. It results in tight load 
distributions, similar to those obtained by the centralized scheme. 
It can also quickly respond to changes of the load index within a 
small number of rounds, which makes it be a superior scheme in 
dynamic P2P systems.      

Our load balancing procedure moves nodes from lightly loaded 
clusters to heavily loaded clusters; this movement adds extra 
churn to the system. We also show that this churn can be reduced 
through adjusting system parameter; for example, configured with 
a larger average cluster size, the number of node movements and 
cluster splits is reduced. However, the dynamics of additional 
churn introduced by load balancing, in the presence of traditional 
churn through arriving and departing nodes, requires further 
exploration. We will also study the effect of running the load 
balancing procedure concurrently on several clusters within the 
system.  
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