
 1

Applying a diffusive load balancing in a clustered P2P system

Ying Qiao
University of Ottawa

Ottawa, Canada
1-613-562-5800

yqiao074@site.uottawa.ca

Gregor v. Bochmann
University of Ottawa

Ottawa, Canada
1-613-562-5800

bochmann@site.uottawa.ca

ABSTRACT
Although a large number of users are using P2P systems, the
ability of these systems to provide services with quality is
questioned. A load balanced P2P system can provide services
with smaller failure rate and better performance; hence, service
quality of the system can be improved. Cluster systems have been
adopted for services which are tolerant to faults. Although a
cluster structure improving the reliability and robustness of a P2P
system, the load unbalancing problem still remains because of the
heterogeneities of nodes and requests. Existing dynamic load
balancing mechanisms in P2P systems require extra connections
and overhead on aggregating the load status from the nodes. We
propose diffusive load balancing in a clustered P2P system, where
a global balance is achieved through balancing the neighborhoods
of all clusters within the existing overlay network. We simulated
three load balancing schemes: directory-initiated, sender-initiated,
and receiver-initiated; from an initially unbalanced situation, the
results show that diffusive load balancing can achieve a global
balance comparable to a centralized directory scheme, and the
distributed directory-initiated scheme provides better results than
the sender- or receiver-initiated schemes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies; C.2.4
[Distributed Systems]: Distributed application.

General Terms
Design, Management, Performance

Keywords
Load balancing, diffusive load balancing, peer-to-peer systems,
distributed algorithms, dynamic resource allocation, performance
management, server clusters, clustered peer-to-peer systems

1. INTRODUCTION
A Peer-to-Peer (P2P) system is a form of distributed computing
system with computer nodes located in the Internet. Normally, a
P2P system can be decomposed into two layers: the overlay
network layer and the application layer. The former connects all
nodes and provides lookup function to locate nodes; the latter
performs the actions of an application, for example, file
downloading in a file system, or stream delivery in a video
system. Figure1 shows a P2P file downloading path between two
peers in a file sharing application with its overlay layer network
and the Internet below.

Figure 1. An example of a file downloading path in a file
sharing P2P application

The overlay network of a P2P system can be constructed using a
structured or unstructured architecture. An unstructured
architecture randomly connects nodes, and the network is resilient
and robust to node failures; but, lookup messages for finding
objects are broadcast which takes a large amount of message
transmissions and time. A structured architecture associates nodes
according to the associations of objects stored in them; lookup
messages are routed among nodes according to their associations,
and objects are located with a relatively low message and time
complexity, e.g., O(logN) in Pastry and Chord, where N is the

number of nodes;)(
1

ddNO in CAN, where N is the
number of nodes, and d is dimension for the torus of a CAN; but,
the network takes some time to reach a stable state when nodes
leave and join the network.

The characteristics of P2P systems are studied mainly for better
understanding them and further improving their performance.
Measurements from systems in the real world, e.g. KaZza,
Gnutella, and PPLive, show that, millions of nodes could
participate in an overlay network at a time, and they randomly
join and leave the network. These nodes have heterogeneous
capacities of resources: processing power, storage space, and
bandwidth; also, the shared objects in the system, i.e., files and
videos, have different popularities, and the popularity of a shared
object changes with time. These heterogeneities cause load
unbalancing among nodes in a P2P application, which results in
some requests experiencing long latency while some nodes are
idle.

One major issue in a P2P system is the dynamics caused by nodes
leaving and joining the system without any notice. Because of this
dynamics, called churn, the quality of service provided by overlay
networks and applications is not guaranteed; they could
experience long delays, or even failures.

Cluster systems have been adopted for services which are tolerant
to faults. When a node fails, the service is still available at other
nodes in the cluster. A cluster structure improves the reliability
and robustness of a P2P system, e.g., eQuus system [1]. Also, in a
cluster system, a consistency protocol can be integrated with a
group membership protocol, such that it maintains consistency of
replicas while the cluster is prone to node failures and recoveries
[2], [3]. From the point of view of replica management, in a
clustered P2P system, all objects stored in the nodes of a cluster
can share one group membership mechanism for managing their
replicas; this limits the overhead required for maintaining
consistency of replicas.

We study load balancing in such a clustered P2P system.
Although, nodes have been clustered in this system, the
heterogeneities of nodes and requests still exist. We proposed
that, loads are balanced among clusters through moving nodes
from lightly loaded clusters to heavily loaded clusters. Installing a
load balancing mechanism, the system will have better overall
performance. Furthermore, with a load balancing mechanism,
clusters can be dynamically resized according to their load
statuses.

We propose to apply diffusive load balancing in a clustered P2P
system. Similar to an energy diffusion procedure, with diffusive
load balancing, a node balances its load only with nodes directly
connected to it. These directly connected nodes compose a local
domain for the node. A global balance can be achieved through
the balance at all of the local domains. As a diffusive load
balancing policy has a small amount of overhead, and it is
scalable when the size of a system increases, it is suitable to be
applied in a P2P system. To apply diffusive load balancing, a
network must cover all nodes, and local domains must overlap. A
cluster P2P system satisfies these conditions. Our diffusive load
balancing moves nodes from heavily loaded clusters to lightly
loaded clusters in the clustered P2P system; loads at these clusters
related to the total capacity of their resources are changed. In this

way, heavily loaded clusters would have more capacity to satisfy
their requests, and the service quality is improved.

We present general background regarding load balancing schemes
in Section 2. In Section 3, we introduce a clustered P2P system:
eQuus, on which we base our simulation. In Section 4, we
describe our diffusive load balancing procedure according to their
policies and four phases; also, we propose a design of components
running this procedure. In Section 5, simulation results are
discussed from the comparison of loads distribution before and
after the running of a load balancing procedure; the differences of
these schemes under different policies and system parameters are
discussed as well. In Section 6, we conclude the paper.

2. Background
Load balancing is “the problem of allocation: of mapping and
remapping” workload to “the physical system” [4]. On one side, a
load balancing scheme determines when and where to move the
load; on the other side, the architecture of a node organization in a
load balancing scheme determines how nodes communicate and
migrate loads for the purpose of load balancing.

2.1 Load balancing schemes
According to its load balancing scheme, a distributed system
moves workload from heavily loaded nodes to lightly loaded
nodes to improve its overall performance [5]. The heavily loaded
node is a sender of load, and the lightly loaded node is a receiver.
A load balancing scheme is a combination of policies. The
policies specify when and where to migrate load for the purpose
of load balancing or sharing. Policies can be classified as follows
[6]:

• Transfer policy: decides whether a node is suitable to
initiate a load movement; either as a sender or as a
receiver.

• Location policy: determines another participant in the
load movement after the Transfer policy has decided a
movement.

• Information policy: specifies when and how to collect
system state information.

• Selection policy: specifies which load should be
transferred in a load movement.

Static load balancing scheme: With a static scheme, loads are
distributed from senders to receivers through deterministic splits
in a random portion or cyclic manner. A static scheme is simple to
implement with no effort in collecting system state information
and easy to achieve with little overhead. However, this scheme
works perfectly only in a homogenous system, where all nodes are
almost the same, and all loads are the same as well. A static
scheme can hardly catch up and react to the dynamics caused by
heterogeneity.

Dynamic load balancing scheme: A dynamic scheme makes
decisions based on the system status at the current or recent
moment. According to system status information, a node can
decide to be a sender or a receiver through a Transfer policy, and
can decide the peer through a Location policy. A Selection policy
selects a load to be transferred, i.e. small tasks vs. large tasks, or
tasks in waiting state vs. those in running state. Dynamic schemes
result in better performance when its nodes of the system have

heterogeneous capacities of resources, and loads come to the
nodes in a random manner.

2.1.1 Architecture of dynamic load balancing schemes
Nodes can be organized in different manners for collecting load
information and making load balancing decisions. The typical
architectures can be classified into centralized, distributed, and
topological.

In a centralized architecture, a central server receives load status
reports from the other nodes, and senders ask the server to find
receivers for them [7]. Although, systems perform best with this
scheme: tasks obtain the lowest mean response time within a
narrow range, it is not scalable because the management workload
for reporting system status information to the central point
increases with the size of the system. Furthermore, a central
information center could be a performance bottleneck and a single
point of failure of the system.

In a distributed scheme, each node has a global or a partial
knowledge of the system status, and it can locally decide to start
transferring a load either into it or out from it. A node could
broadcast its node status periodically through out the system [7],
[8], or, only when its state is changed [8]. In a distributed scheme
with probing policy, when its local status is changed, a node
probes part of the nodes in the system and makes decisions based
on the received responses. Sender-initiated or receiver-initiated
are the two major schemes. With a probing scheme, a sender or
receiver could find its peer through probing a limited number of
nodes [9].

Schemes with topological architectures are proposed for systems
with a large number of nodes. In schemes with group partitioning
[10], [11], and [12], nodes can be partitioned into groups, and
load balancing will be performed in each group first, then, a
global balancing will be performed when loads are unbalanced
among groups. In a scheme with hierarchical architecture [13],
nodes are organized into a tree hierarchy, and inner nodes will
aggregate the status information of its sub-trees; load balancing is
performed from the leaves to the root of the tree through the
indication of aggregated status information at inner nodes.

2.2 P2P load balancing
Load balancing techniques in P2P systems are facing challenges
coming from the characteristics of these systems. First of all, the
size of a P2P system is large, which means that a load balancing
technique applied to it must be scalable. Second, unlike
traditional systems, nodes of a P2P system are not replicas and
requests can not be executed in any node. Alternatively, P2P
systems place or re-place shared objects optimally among nodes,
and overlay routing tables would redirect requests of these shared
objects to the right nodes; as a result, the load of the P2P system
can be balanced. Combined with techniques of dynamic load
balancing, object placement and node placement are two types of
load balancing techniques used in P2P systems.

In object placement techniques, objects are placed at lightly
loaded nodes either when they are inserted into the system [14] or
through dynamic load balancing. In the latter, objects can be
stored in virtual servers and moved from nodes to nodes. [15, 16
and 17] adopted a distributed directory approach similar to a load
balancing scheme with partitioned group architecture. Each node
reports its node status to a directory, and load of nodes is balanced

in each directory. In order to globally balance the system, a node
registers to one of the directories of the system; after it stays there
for a duration, it will leave the directory and register another one

in turn. [18] proposed a aryk − tree architecture for load
balancing; where the inner nodes and root of the tree aggregate
load statuses of their sub-trees, and the root disperses the average
load status of the system to all nodes down the tree. Accordingly,
each node can dynamically identify its relative load situation. In
this kind of hierarchical architecture, load can be balanced from
the leaves to the root according to the aggregated load information
at inner nodes.

In node placement techniques, nodes can be placed or replaced to
locations with heavy load. For example, the Mercury load
balancing mechanism moves nodes from lightly loaded data
ranges to heavily loaded ranges [19]. Nodes are connected into a
ring, and each node periodically samples the ring with a random
walk, which selects nodes from the routing tables as next hops.
According to an estimation value based on samples, a node is able
to detect a lightly loaded range, and move there if it is overloaded.

[20] proposed a load balancing mechanism that combines both
object placement and node placement in a P2P system. Nodes are
connected with a linear link, and each node balances its load with
its two consecutive neighbors. If a node has balanced its load with
its neighbors already, and it is still overloaded, it will select a
lightly loaded node among all nodes in the system to hand over
some of its loads. Before moving, the lightly loaded node will
shed all its loads to its own consecutive neighbors. The load
balancing operations occur when a data object is inserted or
deleted, and nodes are connected through an extra skip list
according to their load information on top of the overlay; this
requires frequent updates of the skip list when the load situation
changes.

2.3 Diffusive load balancing
In a diffusive load balancing technique, a heavily loaded
component sheds portion of its load to any of less loaded
components in its local domain; including the portion left itself,
the total portions can not exceed 1. A diffusive load balancing
technique has a scheme with three aspects [21]: each component
individually performs load balancing; load balancing is achieved
locally in the domain of a component; each local domain partially
overlaps with other local domains, and, components of the whole
system must be covered by domains. From these aspects, we can
see that diffusive load balancing policies are simple, where
messages for collecting statuses and load migration are only
transferred in a local network; also, they are efficient on achieving
global balancing with a small amount of message overheads.

Diffusive load balancing policies can be classified according to
their specifications in two aspects: decision and load migration.
While making a decision, the components evaluates its local state
through collecting load statuses from other components in its
domain; with a sender-initiated policy, after evaluating itself as
overloaded, it initiates a load migration to a receiver in its local
domain; with a receiver-initiated policy, the component will
initiate a load migration if it is under-loaded. Also, a component
could decide senders and receivers in its domain and initiate load
migrations among them [distributed]. Load can be migrated from
an overloaded component to less loaded components in its local
domain, or to components in the global domain. In the latter case,

a path is first located from a sender to a receiver, and then load is
forwarded along the path through the intermediate nodes. While
load is migrated, a component is only allowed to participate in
one action, either sending or receiving, which prevents it from
receiving or shedding loads multiple times at the same time. After
one round running of decision and load migration, the component
will reach a local balancing state.

In research of diffusive load balancing, balancing is measured
through the difference between loads of each component and the
average load of the whole system. When the difference is a small
value, e.g. 0.01, the system is said to be balanced. The research on
convergence studies whether the given load balancing policy can
finally balance a system by a limited number of rounds of local
balancing, and how fast this convergence can be, i.e. the rate of
convergence. It has been proved that a diffusion load balancing
policy can converge in a homogeneous system [22]; this was
generalized to heterogeneous systems in [23]. After each run of
the iteration, the difference becomes smaller; a boundary of
number of iterations exists for the difference reaching the limit.
Networks with different topologies were studied, such as: torus,
grid, and hypercube. In a system of a d-dimensional hypercube, a
policy can converge in d+1 iterations. These load balancing
policies are also studied under the environment where loads
dynamically arrive to nodes.

These policies are mainly studied for massively parallel systems,
e.g., distributed memory multiprocessor system, or parallel
processing system, whose processors are tightly connected to
provide high speed computing power. In these systems, the
number of components could be as large as thousands; however,
the domain of neighbors for each component is small. These
systems adopt diffusive load balancing policies to fully use the
capacity of their resources and further speed up computations
without the managing of a central controller.

3. eQuus
As our load balancing will be based on an eQuus system, we
introduce it here. eQuus is a structured P2P system based on
clusters, where its nodes are organized into clusters according to a
proximity metric, and its DHT is constructed among these
clusters. The proximity metric could be the geographic distance,
or the network distance in the Internet which is measured in
number of hops. Unlike other DHT systems, each cluster is
identified by a unique ID. Also, the routing tables are constructed
based on these IDs. There are up to k nodes belonging to the same
cluster pointed to by an entry of a routing table. A node can select
a node from these k nodes to route a lookup message. Meanwhile,
the shared objects belonging to a cluster are replicated among all
nodes in that cluster.

eQuus has a routing algorithm similar to Pastry, which forwards a
lookup message according to prefix matching. Unlike Pastry, a
node resolves a lookup message by checking if the hash key of the
lookup is located in the range between the ID of itself and its
successor. If this is true, the node returns itself as the final results.
Otherwise, the node will forward the lookup message to the next
hop according to its routing table. The number of steps of a
lookup procedure is bound by O(logN), where N is the number of
clusters in the eQuus.

Nodes in an eQuus system have two levels of connections: intra-
cluster and inter-cluster. At the intra-cluster level, a node connects
with all other nodes in the same cluster. At the inter-cluster level,
a node has connections with k nodes in each neighbor cluster
included in the routing table, which provides k redundancy for
the lookup forwarding, as well as for the application services on
top of the DHT overlay. Each node also stores connections to up
to k nodes in its predecessor and in its successor clusters. During
a lookup procedure, the probability that all k nodes of an entry
would disappear at the same time is very low.

In addition to the operations in regular DHT systems, an eQuus
system provides two extra operations dedicated to clusters, one is
splitting and another is merging.

• Splitting: When a new node joins the eQuus system, it
joins a cluster which is the closest to it on the chosen
proximity metric. Its joining only changes the
membership of this cluster. When the size of the cluster
reaches an upper limit, the cluster will start a splitting
operation, where half of the nodes will be in a new
cluster, and another half will stay in the original cluster.
The new cluster takes over half of the hashed keys
which are close to the predecessor of the original cluster
on the ring. Also, it is identified by an identifier in the
middle of two original identifiers. The new cluster
updates entries of its routing table by searching for them
in the overlay.

• Merging: When the size of an eQuus cluster reaches a
lower bound, the cluster will start to merge with its
predecessor, where all of its nodes join its predecessor,
and its own cluster ID disappears. After merging, the
resulting cluster takes over all of hash keys of both
clusters. Also, the clusters having the merged cluster as
an entry in their routing tables will be notified for its
departure.

With this architecture, only when node joining or leaving
accumulate to a certain degree, clusters will experience merging
or split, and connections associated with these clusters will be
updated. From this point of view, an eQuus is robust and resilient
to churn.

4. Diffusive load balancing for a clustered
P2P networks
The load balancing in a clustered P2P system has two levels:
intra-cluster, i.e., loads among nodes in a given cluster are
balanced, and inter-cluster, i.e., loads among different clusters are
balanced. As research has already intensively studied intra-cluster
load balancing, we propose to apply diffusive load balancing in
the system at the inter-cluster level based on the assumption that
intra-cluster load balancing has been implemented inside each
cluster.

We adopt node movements instead of object movement for load
balancing. Without virtual servers, load balancing through
moving objects can only be realized between consecutive clusters
in the clustered P2P system; in this way, diffusive load balancing
would converge only slowly. With load balancing through moving
node, the overhead of maintaining data consistency among a large

number of nodes in different clusters for moving objects, and the
updating of routing tables in the network is avoided.

4.1 Choice of the load index: available
capacity
A dynamic load balancing scheme identifies the system status
according to a load index at each node; a load index should
correctly reflect the amount of loads at a node, and from this
index, the performance of a node could be evaluated. It has been
reported that the choice of a load index has a large effect on the
performance of a system [24]. CPU queue length is generally
preferred as a load index [25, 7, and 24] because it has a strong
correlation with the mean response time of tasks at the node.
Other load indexes include utilization, request-response time,
available capacity.

The utilization of nodes can be used as load index in a
homogeneous system where the maximum capacities of the nodes
are the same: when two nodes have the same utilization, their
request-response times are the same. However, this is not the case
in heterogeneous systems. CPU queue length can be used in
heterogeneous systems; but it is particularly suitable for load
sharing which uses static thresholds to determine whether load
should be exchanged. Request-response time is used on
dispatching requests among nodes by load sharing scheme as well.

We adopt the available capacity of a node as the load index of our
load balancing scheme. It has been proposed in [27] for balancing
CPU and disk storage usage in a digital library. Also, [28] uses a
metric derived from available capacity to balance bandwidth
usage in a network during the routing of service requests.

We use a M/M/1 queuing model to show that, the average
response time at a node is the reverse of the available capacity of a
node; this means that, when two nodes have the same available
capacity, even if they have different maximum capacities, the
mean response times for a given request will be the same at those
two nodes. We use the notations in [26] to derive the equation (1),
where we have the average response time][rE , the service rate of a
node µ , the arrival rate of a node λ , and the utilization of a
node ρ . As the service rate of a node is the maximum number of
requests it can process per time unit, and the arrival rate is the
number of requests that are processed per time unit, we can say
that the maximum capacity of a node is its service rate, and the
used capacity is its arrival rate; as a result, the utilization of a
node, which is the ratio of λ and µ , becomes the ratio of its
used capacity to its maximum capacity. We have

][rE = 1 / (µ – λ) = 1 / (MaximumCapacity – UsedCapacity)
 = 1 / AvailableCapacity (1)

Because of this directly relationship between the response time
and the available capacity, we use the latter as load index. Since
we assume that the nodes in a cluster are load-balanced, we may
also assume that they have all the same available capacity within a
given cluster. With inter-cluster load balancing, the available
capacities of the nodes in all clusters will be close to their
average. We do not differentiate requests into multiple classes
here.

We can calculate the available capacity of a node with equation
(2) after determining its maximum capacity by benchmark tools

and its utilization by performance measurements. Then, the mean
available capacity of the nodes in a cluster is the load index of the
cluster; by this load index, load balancing procedure will make
decision on node movement, and consequently, the load indexes
among clusters will be changed in the direction to approach the
system average.

AvailableCapacity = MaximumCapacity * (1 – utlization) (2)

4.2 Diffusive load balancing mechanisms
among clusters
Using available capacity as load index, each cluster iteratively
runs a diffusive load balancing procedure which identifies the
state of its own as well of its neighbors, and makes decisions
concerning possible load movements with these neighbors. We
consider three schemes here: directory-initiated, sender-initiated,
and receiver-initiated; they differ in their Location policy. We use
the traditional meaning of sender and receiver here: a sender is a
node will transfer its load out, and a receiver will transfer load in.
In the directory-initiated scheme, when a cluster runs the
procedure, it locates the senders and receivers among its
neighbors; with sender-initiation or receiver-initiation, it locates a
receiver only when it is sender or a sender only when it is
receiver, respectively.

We describe in the following the diffusive load balancing
procedure in terms of four phases:

• LB triggering: the execution of a load balancing
procedure is triggered by a timeout event or a state
change event in a cluster. There is a time duration
between two consecutively runs of the procedure, and
this duration is pre-configured. The procedure is also
activated when a cluster changes its state, either to be a
sender or to be a receiver.

• Load determination: First, the cluster determines its
own load status as well as the load status of its
neighborhood through sending probing messages to its
neighbors, and waits for responses from them; a probed
cluster responds with its load index.

• Decision: A parameter, called bound, is used to
determine whether a cluster is considered overloaded or
under-loaded. First the load average is calculated for all
the clusters in the neighborhood. Then the upper and
lower load thresholds are calculated by the formula:
threshold = average-load-index * (1 +/- bound). The
bound is given in percentage of the average load. A
cluster is a candidate receiver (sender) of load if its load
index is smaller (larger) than the lower threshold. The
purpose of the decision procedure is to identify one or
several receiver-sender pairs and send a load transfer
request to the receiver of each pair, including as
parameters the ID of the selected sender (which is the
target for the node movement) and the amount of load it
requires to reach the load average (called required
capacity). The details of the decision procedures
depends on the Location policy:

 Directory-initiated: the cluster identifies one or several
receiver-sender pairs, as appropriate.

 Sender-initiated: if the cluster is a sender, then it tries
to identify a corresponding receiver in its neighborhood.

 Receiver-initiated: If the cluster is a receiver, then it
tries to identify a corresponding sender in its
neighborhood.

• Load transfer: After a receiver cluster receives an
instruction of node movement, it will select nodes from
its own, delete them from its membership list, and let
them join the sender cluster. It is important that the
node movement should not cause the state of these
clusters to be changed to the opposite, e.g., an under-
loaded cluster becomes overloaded, or, an overloaded
cluster becomes under-loaded. A receiver can only
transfer out the portion which is over the mean, and we
call it transferable capacity; in order to avoid this
situation, the transferred portion should be close to the
smaller one of the required capacity and the transferable
capacity.

5. Simulation and Discussion
We have built a simulation program for evaluating the
performance of the diffusive load balancing procedures described
above. Also, we compared them with a central directory scheme,
where a single directory collects status information of all clusters
in the system and makes inter-cluster load balancing decisions
using the same kind of decision criteria based on mean and
threshold values. As we are interested in the differences between
these different policies, such as their rates of convergence, the
effect of the threshold parameters and the impact of churn, we
have not taken into account the time and cost of message
transmission and node movement (at the current stage of our
studies); in our simulation, the LB procedures of the different
clusters work sequentially in a random order. We also assume that
the capacity lost during node movement is negligible.

In our simulation study, we assume that a cluster has its own
intra-cluster load balancing and the load indexes are the same at
all of its nodes. To show the speed of load balancing convergence,
we assume in our simulation an initially unbalanced load
situation, were the total available capacity of different clusters is
uniformly distributed from the lowest value: 0 to the maximum of
a cluster. Hence, the load index of a cluster can be derived from
dividing its total available capacity by the number of its nodes.
We study the system with fixed (but heterogeneous) traffic loads
for the different clusters and we assume that the nodes within a
cluster have the same maximum capacity (10) here; heterogeneous
node capacities are considered below. Figure 2(a) is an example
of the histogram of load among clusters before load balancing,
where the load indexes of the clusters are distributed between 0
and 10.

For the purpose of measurement, we insert time points into the
simulation, and the time duration between two consecutive points
is a measurement round; in one round, each cluster runs the load
balancing. In a LB decision phase, a cluster could identify its
neighborhood as balanced according to the criteria listed in
previous section; in this case, no node movement would occur.
When there is no node movement among all neighborhoods in the
last round, the system is said to be globally balanced and the
simulation will be stopped. In the real system, the LB procedure

will run from time to time to handle the possible unbalancing of
the system.

5.1 Load balancing with homogeneous
nodes
We display the histogram of the load index among clusters after
running of LB procedure in Figure 2. The system has 10,000
nodes; the average size of a cluster is configured as 8 (the number
of nodes in a cluster then ranges between 4 and 16 under the
organization of eQuus), and the load balancing bound is
plus/minus 20% of the mean. Figure 2 (b) – (e) show the results of
these four schemes. The figures show the number of clusters as a
function of the load index when the system got into the balanced
state (as defined above). Except the receiver-initiate scheme, these
schemes balance the load tightly around the mean, and especially,
there is no heavily loaded cluster in the system. The directory-
initiated scheme has a histogram similar to the central directory
scheme, where there is a spike existing near the mean; with the
sender-initiated and the receiver-initiated schemes the load index
of the clusters is more spread between the lower and upper
thresholds. In the receiver-initiated scheme, a cluster makes
decision on node movement only when it identifies itself as a
receiver. In the case that a cluster is not a receiver, node
movements will not occur in its local domain, even when there are
overloaded clusters in the domain. This is the reason why with the
receiver-initiated scheme some under-loaded clusters remain.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r

of
 c

liq
ue

s

mean availale capacity

beforeBalancing

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r

of
 c

liq
ue

s

mean availale capacity

central directory

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r

of
 c

liq
ue

s

mean availale capacity

directory-initiated

(c)

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r

of
 c

liq
ue

s

mean availale capacity

sender-initiated

(d)

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r

of
 c

liq
ue

s

mean availale capacity

receiver-initiated

(e)

Figure 2. The histogram of loads among clusters before load
balancing (a), and after load balancing, (b) central directory,

(c) directory-initiated, (d) sender-initiated, (e) receiver-
initiated

From Figure 2, we can see that all these schemes can globally
balance the load indexes among clusters in the system through
balancing their neighborhood. Next, we give some numerical
results about these schemes. Table 1 provides a comparison for
the standard deviation (std. dev.) of the load index, the delta of the
load index which is defined as: (mean – minimum)/mean * 100%,

the rounds of running a scheme to achieve global balancing, the
total number of node movements, and the number of splits and
merges that occurred during the balancing procedure. These
values are the average taken from ten experimental runs for
different bounds and different decision policies.

Table 1. Comparison of load balancing results
20% 50%

CD DI SI RI CD DI SI RI

Std. dev. 1.033 0.709 0.915 1.098 2.23 2.028 2.176 2.13

Delta. (%) 19.63 19.28 25.14 62.3 49.92 47.95 57.34 66.18

rounds 4.3 1.1 3.1 4.9 3.5 1.5 2.7 3

Node mv. 1680 1942 1695 2013 606 758 581 713

splits 180 219 200 210 63 85 68 76

merges 81 126 123 81 7 33 35 7

CD: central directory, DI: directory-initiated, SI: sender-initiated,
RI: receiver-initiated

With different bounds configured in the LB decision phase, they
are all able to balance the load indexes to the mean; however, they
have different results. The central directory scheme is an ideal
scheme where the delta of the load index is most close to the
bounds in both cases; meanwhile, it reaches the balanced state
with smaller number of node movements. A larger bound causes a
larger delta of load indexes; in this case, schemes can approach
the balancing state fast, i.e., the number of rounds to be balanced
with a bound of 50% is less than that for a bound of 20%.
Compared with other schemes, the directory-initiated scheme
spends less rounds but has more node movements for balancing
the load indexes with a smaller delta, which indicates that its fast
convergence is based on more load balancing decisions and node
movements. The values of the table confirm the exception of the
receiver-initiated scheme, already indicated in Figure 2, for which
the minimum load index is further away from the maximum;
furthermore, the receiver-initiated scheme uses more rounds.

5.2 Impact to Churn
The load balancing procedure causes node movements and
introduces extra churn into the system. Churn impacts this peer-
to-peer system at two levels: intra-cluster and inter-cluster. At the
intra-cluster level, the departure of an existing node or the arrival
of a new one only impacts the cluster membership management.
At the inter-cluster level, such changes may cause the split and
merge of some clusters; in which case the routing tables of the
clusters must be updated. The frequency of splits and merges is
related to the frequency of arrival and departure of nodes, and also
the average size of the clusters. The node movements due to load
balancing have a similar impact at the intra- and inter-cluster
level.

In order to understand the dynamics of our load balancing
schemes, we display in Figure 3 the number of node movements
(a), the number of splits (b), the number of merges (c), the
standard deviations of the load index (d), and the delta between
the minimum and the mean load index (e) as a function of the
number of rounds. The simulator is configured with the same
parameters used in Figure 2.

Initially, the load indexes at clusters are dispersed in the range
from (0, 10) as seen in Figure 2(a) with large standard deviations
and deltas. During each round of the load balancing procedure,
the standard deviation and delta of the load indexes become

smaller; in fact, most of the changes occur during the first round.
The directory-initiated scheme makes 99% of its node movements
during the first round; while the sender-initiated and the receiver-
initiated schemes only move about 90%. Also, the directory-
initiated scheme reduces the delta most quickly during the first
round (Figure 3(e)). Most splits and merges (Figure 3(b) and 3(c))
of clusters occur during the first round, corresponding to the large
portion of node movements (Figure 3(a)). After the first round,
there are still some node movements, and changes of the load
indexes can be observed from Figure 3(d) and 3(e).

If we associate the load status at each round in Figure 3 with the
load state of the system, the initial status could be seen as an
extremely unbalanced state and the final status as balanced. Figure
3 is also a picture showing the migration of system from the
unbalanced to the balanced state.

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 N

od
e

M
ov

em
en

ts

Iteration round

central directory
directory-initated

sender-initated
receiver-initiated

(a)

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 s

pl
its

Iteration round

central directory
directory-initated

sender-initated
receiver-initiated

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 m

er
ge

s

Iteration round

central directory
directory-initated

sender-initated
receiver-initiated

(c)

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10

S
ta

nd
ar

d
de

vi
at

io
n

of
 lo

ad
 in

de
x

Iteration round

central directory
directory-initated

sender-initated
receiver-initiated

(d)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10

D
el

ta
 b

et
w

ee
n

m
in

im
um

 a
nd

 m
ea

n

Iteration round

central directory
directory-initated

sender-initated
receiver-initiated

(e)

Figure 3. The status of the system at the end of each iteration
round: (a) number of node movements, (b) number of splits,

(c) number of merges, (d) standard deviation of load index, (e)
delta between the minimum and the mean load index

5.3 Load balancing with heterogeneous
nodes
As the nodes in a P2P system have heterogeneous capacity, the
Selection policies of the load balancing schemes should be
modified: when a scheme selects a node for a receiver, it should
considers the required capacity for the sender to reach the mean

load index, and pick a node to be transferred having a maximum
capacity close to it; we call this a policy with capacity
consideration. Through such a policy, the number of node
movements to achieve the balanced state would be reduced.

We have configured the simulator with nodes having capacities in
the range [10, 5000] with a Pareto distribution shape as 2, and
scale as 100 [16]; the other parameters are the same as for Figure
2. Table 2 shows the load balancing results of these two different
selection policies: (a) policy with capacity consideration and (b)
with random selection of nodes. As the directory-initiated scheme
works best among these diffusive load balancing schemes, we
only compare it with the central directory scheme in this and the
next subsections.

We see from Table 2 that the trends observed in a homogeneous
system remain present in heterogeneous systems, e.g., the
directory-initiated scheme uses a smaller number of rounds to
reach a balanced state with more node movements; the receiver-
initiated scheme is left with some overloaded clusters when the
load balancing procedure stops. Furthermore, the number of node
movements is reduced with capacity consideration, as compared
with random node selection. For instance, in the directory-
initiated scheme, the movements are reduced by 20%. This
indicates that selecting a node with its maximum capacity
matching to the required capacity is superior to randomly
selection.

Table 2. Comparison of load balancing results with random
and capacity consideration policy

random Capacity

CD DI CD DI

Std. dev. 5.98 4.5 5.5 4.37

Delta. (%) 19.45 20.56 19.92 19.5

rounds 4.8 1.6 4.4 1.6

Node mv. 1722 2011 1204 1645

split 182 213 128 181

merge 90 119 28.4 83

CD: central directory, DI: directory-initiated

5.4 Impact of cluster size to LB results on
churn
As the load balancing procedure causes churn (i.e. node
movements) in the system, we compare in Table 3 the
performance of the load balancing procedure in systems with
different average cluster sizes. In a system with large cluster sizes,
the probability that a given node movement leads to a split or
merge of clusters is smaller than in systems with smaller cluster
sizes. Therefore we expect that load balancing is more effective in
systems with larger average cluster sizes.

Table 3 shows a comparison for three average cluster sizes. The
simulation is based on similar parameters as for Table 2 with
heterogeneous capacities and node selection based on capacity
consideration; in this case, the simulation is more closed to the
real world. The data are aggregated from 10 experiment runs. We
see that for systems with larger cluster sizes the number of node
movements is reduced, and the numbers of splits and merges
relative to the total number of cliques in the system are also
reduced. The table shows that there are fewer merges happened
during the running of the load balancing procedure. A cluster

merges itself with its consecutive cluster when its size reaches a
lower limit. When the load balancing procedure runs, it reduces
the loss of the capacity due to departing nodes (churn) through
moving nodes from other clusters. From this point of view, the
load balancing procedure is counter-balances churn. Since we
have run our simulation without churn, we have not explored this
benefit of load balancing. This point requires further study with a
dynamic scenarios including churn.

Table 3. Comparison of network dynamics for different
average sizes of cliques

8 16 32

CD DI CD DI CD DI

Delta. (%) 19.92 19.5 19.92 18.5 19.94 19.1

rounds 4.4 1.6 3.9 1.4 3.9 1.4

Node mv. 1204 1645 1001 1323 940 1168

Split (%) 14.1 20.0 12 17.13 9.8 14.3

Merge (%) 3.14 9.1 1.5 5 1.5 2.93

CD: central directory, DI: directory-initiated

6. Conclusion
Load unbalance in a P2P system is caused by the heterogeneities
of node capacities and the popularity of their services. Also, churn
(dynamic node arrival and departure) could change the load
distribution among nodes and introduce randomly unbalanced
situations. In a clustered P2P system, the arrival and departure of
nodes changes the capacity of the clusters and affects the
performance of the services they provide. In order to remediate
the unbalanced load situations, due to any reason, we propose to
move nodes from clusters with low load to clusters with high load
in order to equalize the load situations of the clusters in the P2P
system. It is clear that some kind of overhead can not be avoided.

[16] proposed a distributed directory architecture for load
balancing in a P2P system; however, this induces extra network
connections from nodes to directories. [18] proposed a tree
hierarchy for aggregating resource information and managing
resources; but this introduces extra overhead for maintaining the
tree. Diffusive load balancing [21] simplifies the procedure by
achieving a global balance through local balancing procedures. It
does not require extra management connections and maintenance
infrastructure; this improves the efficiency of resource
management in P2P systems. In the diffusive load balancing
scheme described in [20], the nodes are organized as a linked list
and a node balances its load with its two consecutive neighbors.
In order to increase the speed of global convergence, a skip list is
introduced to maintain load information about nodes in other
parts of the linked list; but this introduces extra overhead for
managing the list.

Our diffusive load balancing procedure for clustered P2P system
is similar to [20]. However, it uses all those clusters that are
included in the routing table as neighborhood of a given cluster.
Because of the hierarchical structure of the routing tables, this
includes clusters throughout the cluster naming space; therefore
we get relatively fast global convergence. The other advantage is
that we can directly use the neighborhood structure provided by
the existing P2P overlay structure, which reduces the overhead.

Our diffusive load balancing procedure equalizes load among
clusters based on the available capacities of their nodes, which is
taken as our load index. Since the available capacity is directly
associated with the mean response time of a node, a system load-
balanced based on available capacity has a uniform response time.

Our simulation compares the performance of four different load
balancing schemes: a scheme using a centralized directly and
three distributed schemes with different decision policies:
directory-initiated, sender-initiated, and receiver-initiated. Our
simulation results show that the directory-initiated policy is the
best distributed decision policy. It results in tight load
distributions, similar to those obtained by the centralized scheme.
It can also quickly respond to changes of the load index within a
small number of rounds, which makes it be a superior scheme in
dynamic P2P systems.

Our load balancing procedure moves nodes from lightly loaded
clusters to heavily loaded clusters; this movement adds extra
churn to the system. We also show that this churn can be reduced
through adjusting system parameter; for example, configured with
a larger average cluster size, the number of node movements and
cluster splits is reduced. However, the dynamics of additional
churn introduced by load balancing, in the presence of traditional
churn through arriving and departing nodes, requires further
exploration. We will also study the effect of running the load
balancing procedure concurrently on several clusters within the
system.

7. Reference:
[1]: T. Locher, S. Schmid, R. Wattenhofer, "eQuus: A Provably
Robust and Locality-Aware Peer-to-Peer System," p2p, pp. 3-
11, Sixth IEEE International Conference on Peer-to-Peer
Computing (P2P'06), 2006

[2]: J. Gray, P. Helland, P. O'Neil, and D. Shasha, “The dangers
of replication and a solution.” In Proceedings of the 1996 ACM
SIGMOD international Conference on Management of Data
(SIGMOD '96), pp. 173-182.

[3]: E. Pitoura, B. Bhargava, “Data consistency in intermittently
connected distributed systems,” IEEE Transactions on Knowledge
and Data Engineering, vol.11, no.6, pp.896-915, Nov/Dec 1999

[4]: O. Kremien, J. Kramer, "Methodical Analysis of Adaptive
Load Sharing Algorithms," IEEE Transactions on Parallel and
Distributed Systems, vol. 03, no. 6, pp. 747-760, Nov., 1992

[5]: T.L. Casavant, J.G. Kuhl, "A taxonomy of scheduling in
general-purpose distributed computing systems," IEEE
Transactions on Software Engineering, vol. 14, no. 2, pp. 141-
154, Feb., 1988

[6]: N. G. Shivaratri, P. Krueger, M. Singhal, “Load distributing
for locally distributed systems,” Computer, vol.25, no.12, pp.33-
44, Dec 1992

[7]: S. Zhou, “A Trace-Driven Simulation Study of Dynamic
Load Balancing,” IEEE Transactions on Software Engineering,
vol. 14, no. 9, pp. 1327-1341, Sept., 1988

[8]: M. Livny, M. Melman, “Load balancing in homogeneous
broadcast distributed systems,” in Proceedings of the Computer
Network Performance Symposium ACM, New York, NY, 47-55,
1982

[9]: D. L. Eager, E. D. Lazowska, and J. Zahorjan, “A comparison
of receiver-initiated and sender-initiated adaptive load sharing,”
SIGMETRICS Performance Evaluation Review 13, 2, Aug. 1985

[10]: M.J. Zaki, W. Li, S. Parthasarathy, "Customized dynamic
load balancing for a network of workstations," Fifh IEEE
International Symposium on High Performance Distributed
Computing (HPDC-5 '96), p. 282, 1996

[11]: S. Zhou, X. Zheng, J. Wang, and P. Delisle. “Utopia: a load
sharing facility for large, heterogeneous distributed computer
systems,” Software-Practice and Experience. 23, 12, Dec. 1993,
pp. 1305-1336.

[12]: M.-V. Mohamed-Salem, G. v. Bochmann, and J. W. Wong,
“Wide-area server selection using a multi-broker architecture,” in
Proceedings of International Workshop on New Advances of Web
Server and Proxy Technologies. Providence, USA, May 19, 2003.

[13]: S. P. Dandamudi, and K. C. Lo, “A Hierarchical Load
Sharing Policy for Distributed Systems,” in Proceedings of the
5th international Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
MASCOTS. IEEE Computer Society, Washington, DC, 1997

[14]: J. Byers, J. Considine, and M. Mitzenmacher. “Simple Load
Balancing for Distributed Hash Tables,” In Proceedings of the
2nd International Workshop on Peer-to-Peer Systems (IPTPS
'03), February 2003.

[15]: A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica. “Load Balancing in Structured P2P Systems,” In
Proceeding of 2nd International Workshop on Peer-to-Peer
Systems (IPTPS '03), 2003

[16]: B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica, “Load balancing in dynamic structured P2P systems,”
INFOCOM 2004. Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies , vol.4, no., pp.
2253-2262, vol.4, 7-11 March 2004

[17]: S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and
I. Stoica, “Load balancing in dynamic structured peer-to-peer
systems,” Performance EvaluationVolume 63, Issue 3, , P2P
Computing Systems, March 2006, Pages 217-240.

[18]: Y. Zhu, Y. Hu. “Efficient, proximity-aware load balancing
for DHT-based P2P systems,” IEEE Transactions on Parallel and
Distributed Systems, vol.16, no.4, pp. 349-361, April 2005

[19]: A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury:
supporting scalable multi-attribute range queries,” In Proceedings
of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols For Computer Communication.
SIGCOMM '04. ACM, New York, NY.

[20]: P. Ganesan, B. Mayank, and H. Garcia-Molina. “Online
Balancing of Range-Partitioned Data with Applications to Peer-
to-Peer Systems,” in VLDB, 2004.

[21]: A. Corradi, L. Leonardi, F. Zambonelli, Diffusive Load-
Balancing Policies for Dynamic Applications, IEEE Concurrency,
vol. 7, no. 1, pp. 22-31, Jan.-Mar. 1999,

[22]: G. Cybenko, Dynamic load balancing for distributed
memory multiprocessors. J. Parallel Distrib. Comput. 7, 2 (Oct.
1989), 279-301

[23]: B. Monien and R. Preis, Diffusion schemes for load
balancing on heterogeneous networks, Theory of Computing
Systems, vol 35, 2002.

[24]: T. Kunz, “The Influence of Different Workload Descriptions
on a Heuristic Load Balancing Scheme,” IEEE Transactions on
Software Engineering, vol. 17, no. 7, pp. 725-730, Jul., 1991

[25]: D. Ferrari, and S. Zhou, “A load index for dynamic load
balancing,” in Proceedings of 1986 ACM Fall Joint Computer
Conference IEEE Computer Society Press, Los Alamitos, CA, pp.
684-690, 1986

[26]: R. Jain, “The Art of Computer Systems Performance
Analysis” 1991, John Wiley & Sons, New York

[27]: H. Zhu, T. Yang, Q. Zheng, D. Watson, O. H. Ibarra, and
T. Smith, Adaptive Load Sharing for Clustered Digital Library
Servers. In Proceedings of the 7th IEEE international Symposium
on High Performance Distributed Computing (July 28 - 31,
1998).

[28]: R. Bhaskaran, R.H. Katz, "Load balancing and stability
issues in algorithms for service composition," INFOCOM
2003.Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE , vol.2, no., pp.
1477-1487 vol.2, 30 March-3 April 2003

