Applying a diffusive load balancing in a clustered P2P system

Ying Qiao
University of Ottawa
Ottawa, Canada
1-613-562-5800

yqgiao074@site.uottawa.ca

ABSTRACT

Although a large number of users are using P2Pesst the
ability of these systems to provide services withaldy is
guestioned. A load balanced P2P system can prosédeices
with smaller failure rate and better performancende, service
quality of the system can be improved. Clusteresysthave been
adopted for services which are tolerant to faultkhough a
cluster structure improving the reliability and usiness of a P2P
system, the load unbalancing problem still remaiesause of the
heterogeneities of nodes and requests. Existingardyn load
balancing mechanisms in P2P systems require egtraections
and overhead on aggregating the load status frermslles. We
propose diffusive load balancing in a clustered Bgfem, where
a global balance is achieved through balancingédighborhoods
of all clusters within the existing overlay netwolie simulated
three load balancing schemes: directory-initiageshder-initiated,
and receiver-initiated; from an initially unbaladcsituation, the
results show that diffusive load balancing can exhia global
balance comparable to a centralized directory seheand the
distributed directory-initiated scheme providestéretesults than
the sender- or receiver-initiated schemes.

Categories and Subject Descriptors
C.4 [Performance of Systems]: design
[Distributed Systems]: Distributed application.

studies; C.2.4

General Terms
Design, Management, Performance

Keywords

Load balancing, diffusive load balancing, peer-¢@p systems,
distributed algorithms, dynamic resource allocatiparformance
management, server clusters, clustered peer-tosgetms

Gregor v. Bochmann
University of Ottawa
Ottawa, Canada
1-613-562-5800

bochmann@site.uottawa.ca

1 INTRODUCTION

A Peer-to-Peer (P2P) system is a form of distrihudemputing
system with computer nodes located in the InterlNetmally, a
P2P system can be decomposed into two layers: tieeay
network layer and the application layer. The forroennects all
nodes and provides lookup function to locate nodes; latter
performs the actions of an application, for exampfie

downloading in a file system, or stream delivery dnvideo
system. Figurel shows a P2P file downloading pattvéen two
peers in a file sharing application with its ovgrlayer network
and the Internet below.

Application file downloading

Figure 1. An example of afile downloading path in afile
sharing P2P application

The overlay network of a P2P system can be cortstitugsing a
structured or unstructured architecture. An unstmed
architecture randomly connects nodes, and the mktiwgesilient
and robust to node failures; but, lookup messagesfifiding
objects are broadcast which takes a large amounhaxsage
transmissions and time. A structured architectsemeiates nodes
according to the associations of objects storeth@m; lookup
messages are routed among nodes according toadsgiciations,
and objects are located with a relatively low mgssand time
complexity, e.g.,0(logN) in Pastry and Chord, where N is the

1
number of nodeso(dN ‘) in CAN, whereN is the
number of nodes, amdlis dimension for the torus of a CAN; but,
the network takes some time to reach a stable sthém nodes
leave and join the network.

The characteristics of P2P systems are studiedlynfain better
understanding them and further improving their @enfance.
Measurements from systems in the real world, e.gZ#4,
Gnutella, and PPLive, show that, millions of nodesuld
participate in an overlay network at a time, andythandomly
join and leave the network. These nodes have tlggasmus
capacities of resources: processing power, stosmgeEe, and
bandwidth; also, the shared objects in the system, files and
videos, have different popularities, and the poptylaf a shared
object changes with time. These heterogeneitiessecdoad
unbalancing among nodes in a P2P application, wrgshilts in
some requests experiencing long latency while soodes are
idle.

One major issue in a P2P system is the dynamicsedaoy nodes
leaving and joining the system without any noti8ecause of this
dynamics, called churn, the quality of service jled by overlay
networks and applications is not guaranteed; thewldc
experience long delays, or even failures.

Cluster systems have been adopted for serviceshvene tolerant
to faults. When a node fails, the service is stailable at other
nodes in the cluster. A cluster structure improtres reliability

and robustness of a P2P system, e.g., eQuus sjitefttso, in a

cluster system, a consistency protocol can be iiated with a

group membership protocol, such that it maintamssistency of
replicas while the cluster is prone to node fasuaad recoveries
[2], [3]. From the point of view of replica managent, in a

clustered P2P system, all objects stored in thees\ad a cluster
can share one group membership mechanism for memnageir

replicas; this limits the overhead required for mbaining

consistency of replicas.

We study load balancing in such a clustered P2Remsys
Although, nodes have been clustered in this systémne,
heterogeneities of nodes and requests still eXi&. proposed
that, loads are balanced among clusters throughingavodes
from lightly loaded clusters to heavily loaded ¢érs. Installing a
load balancing mechanism, the system will haveebaiterall
performance. Furthermore, with a load balancing haeism,
clusters can be dynamically resized according teir thoad
statuses.

We propose to apply diffusive load balancing inl@stered P2P
system. Similar to an energy diffusion proceduréh wiffusive
load balancing, a node balances its load only wittles directly
connected to it. These directly connected nodesposm a local
domain for the node. A global balance can be aeigtrough
the balance at all of the local domains. As a diffe load
balancing policy has a small amount of overhead #nis
scalable when the size of a system increases,sititable to be
applied in a P2P system. To apply diffusive loadambeing, a
network must cover all nodes, and local domainstrousrlap. A
cluster P2P system satisfies these conditions. diffusive load
balancing moves nodes from heavily loaded clustersightly
loaded clusters in the clustered P2P system; laatlese clusters
related to the total capacity of their resourcesdranged. In this

way, heavily loaded clusters would have more capdoi satisfy
their requests, and the service quality is improved

We present general background regarding load balguschemes
in Section 2. In Section 3, we introduce a clusteP@P system:
eQuus, on which we base our simulation. In Sectionwe
describe our diffusive load balancing procedureoatiag to their
policies and four phases; also, we propose a defigpmponents
running this procedure. In Section 5, simulatiorsutes are
discussed from the comparison of loads distributi@fore and
after the running of a load balancing procedure;differences of
these schemes under different policies and systmameters are
discussed as well. In Section 6, we conclude tipepa

2. Background

Load balancing isthe problem of allocation: of mapping and
remapping”workload to the physical system4]. On one side, a
load balancing scheme determines when and whemeot@ the
load; on the other side, the architecture of a rardanization in a
load balancing scheme determines how nodes comatenand
migrate loads for the purpose of load balancing.

2.1 Load balancing schemes

According to its load balancing scheme, a distedusystem

moves workload from heavily loaded nodes to lighthyded

nodes to improve its overall performance [5]. Tleavily loaded

node is a sender of load, and the lightly loadederis a receiver.

A load balancing scheme is a combination of paddici&#he

policies specify when and where to migrate loadtfe purpose

of load balancing or sharing. Policies can be diassas follows

[6]:

« Transferpolicy: decides whether a node is suitable to

initiate a load movement; either as a sender om as
receiver.

* Location policy: determines another participant in the
load movement after th€ransferpolicy has decided a
movement.

* Information policy: specifies when and how to collect
system state information.

e Selection policy: specifies which load should be

transferred in a load movement.

Static load balancing scheme: With a static schdow]s are
distributed from senders to receivers through ddtestic splits

in a random portion or cyclic manner. A static sokds simple to
implement with no effort in collecting system statdéormation

and easy to achieve with little overhead. Howetleis scheme
works perfectly only in a homogenous system, wiadireodes are
almost the same, and all loads are the same as Avedtatic

scheme can hardly catch up and react to the dysaraigsed by
heterogeneity.

Dynamic load balancing scheme: A dynamic scheme emak
decisions based on the system status at the cuoremécent
moment. According to system status information, aalen can
decide to be a sender or a receiver throughaasferpolicy, and
can decide the peer through.acationpolicy. A Selectionpolicy
selects a load to be transferred, i.e. small task$arge tasks, or
tasks in waiting state vs. those in running st@tgmamic schemes
result in better performance when its nodes ofdysem have

heterogeneous capacities of resources, and loacke ¢o the
nodes in a random manner.

2.1.1 Architecture of dynamic load balancing schemes
Nodes can be organized in different manners folecthg load
information and making load balancing decisionse Tpical
architectures can be classified into centralizadtriduted, and
topological.

In a centralized architecture, a central serveeives load status
reports from the other nodes, and senders asketiversto find
receivers for them [7]. Although, systems perforastbwith this
scheme: tasks obtain the lowest mean response ithén a
narrow range, it is not scalable because the mamagteworkload
for reporting system status information to the wntpoint
increases with the size of the system. Furthermareentral
information center could be a performance bottlkree@ a single
point of failure of the system.

In a distributed scheme, each node has a globa partial

knowledge of the system status, and it can loaddlgide to start
transferring a load either into it or out from A. node could
broadcast its node status periodically throughtbatsystem [7],
[8], or, only when its state is changed [8]. Inistributed scheme
with probing policy, when its local status is chadga node
probes part of the nodes in the system and mal@siales based
on the received responseen8er-initiatedor receiver-initiated

are the two major schemes. With a probing schensgnaer or
receiver could find its peer through probing a tedi number of
nodes [9].

Schemes with topological architectures are propdsedystems
with a large number of nodes. In schemes with giganbitioning
[10], [11], and [12], nodes can be partitioned igoups, and
load balancing will be performed in each grouptfithen, a
global balancing will be performed when loads andalanced
among groups. In a scheme with hierarchical archite [13],
nodes are organized into a tree hierarchy, andrinodes will
aggregate the status information of its sub-trkes] balancing is
performed from the leaves to the root of the tieeugh the
indication of aggregated status information at immzdes.

2.2 P2Pload balancing

Load balancing techniques in P2P systems are fagtiatienges
coming from the characteristics of these systerirst Bf all, the

size of a P2P system is large, which means thaaé balancing
technique applied to it must be scalable. Seconaljkei

traditional systems, nodes of a P2P system areapdicas and
requests can not be executed in any node. Alteaipti P2P

systems place or re-place shared objects optinaatigng nodes,
and overlay routing tables would redirect reque$thiese shared
objects to the right nodes; as a result, the Idatie@ P2P system
can be balanced. Combined with techniques of dymdoad

balancing, object placement and node placementareypes of
load balancing techniques used in P2P systems.

In object placement techniques, objects are plaaedightly

loaded nodes either when they are inserted intaykem [14] or
through dynamic load balancing. In the latter, otgecan be
stored in virtual servers and moved from nodesades. [15, 16
and 17] adopted a distributed directory approauniilai to a load

balancing scheme with partitioned group architextiiach node
reports its node status to a directory, and loagbales is balanced

in each directory. In order to globally balance system, a node
registers to one of the directories of the systafter it stays there
for a duration, it will leave the directory and iggr another one

in turn. [18] proposed X~aYY tree architecture for load
balancing; where the inner nodes and root of tee &iggregate
load statuses of their sub-trees, and the rooedigs the average
load status of the system to all nodes down the= tkecordingly,
each node can dynamically identify its relativedaatuation. In
this kind of hierarchical architecture, load canbdadanced from
the leaves to the root according to the aggredatetiinformation
at inner nodes.

In node placement techniques, nodes can be placegplaced to
locations with heavy load. For example, the Mercuopd

balancing mechanism moves nodes from lightly loadieda
ranges to heavily loaded ranges [19]. Nodes areexrd into a
ring, and each node periodically samples the riitg & random
walk, which selects nodes from the routing tablesnext hops.
According to an estimation value based on samplesde is able
to detect a lightly loaded range, and move theitesfoverloaded.

[20] proposed a load balancing mechanism that coesbboth
object placement and node placement in a P2P sybtedes are
connected with a linear link, and each node bakitsdoad with
its two consecutive neighbors. If a node has badrits load with
its neighbors already, and it is still overloadédwill select a
lightly loaded node among all nodes in the systerhand over
some of its loads. Before moving, the lightly loddeode will

shed all its loads to its own consecutive neighbdise load
balancing operations occur when a data object seriad or
deleted, and nodes are connected through an ekipa list

according to their load information on top of theeday; this
requires frequent updates of the skip list whenltlagl situation
changes.

2.3 Diffusiveload balancing

In a diffusive load balancing technique, a heavibaded
component sheds portion of its load to any of l&szsded
components in its local domain; including the pmtieft itself,
the total portions can not exceed 1. A diffusivadadbalancing
technique has a scheme with three aspects [21f @amponent
individually performs load balancing; load balarris achieved
locally in the domain of a component; each locahdm partially
overlaps with other local domains, and, componehtke whole
system must be covered by domains. From these taspex can
see that diffusive load balancing policies are $&mmhere
messages for collecting statuses and load migragi@n only
transferred in a local network; also, they arecédfit on achieving
global balancing with a small amount of messagetmaxs.

Diffusive load balancing policies can be classifattording to
their specifications in two aspects: decision apadl migration.
While making a decision, the components evaluasco¢al state
through collecting load statuses from other comptmeén its
domain; with a sender-initiated policy, after ewlng itself as
overloaded, it initiates a load migration to a reeein its local
domain; with a receiver-initiated policy, the compat will
initiate a load migration if it is under-loaded.sal a component
could decide senders and receivers in its domainiratiate load
migrations among them [distributed]. Load can bgrated from
an overloaded component to less loaded componerits local
domain, or to components in the global domainhknlatter case,

a path is first located from a sender to a receized then load is
forwarded along the path through the intermediatdes. While
load is migrated, a component is only allowed totip@ate in

one action, either sending or receiving, which pres it from

receiving or shedding loads multiple times at tame time. After
one round running of decision and load migratitie, tomponent
will reach a local balancing state.

In research of diffusive load balancing, balanciagmeasured
through the difference between loads of each compband the
average load of the whole system. When the diffsxda a small
value, e.g. 0.01, the system is said to be balarideslresearch on
convergence studies whether the given load balgnmiticy can
finally balance a system by a limited number ofnds of local
balancing, and how fast this convergence can bethe rate of
convergence. It has been proved that a diffusi@ad lbalancing
policy can converge in a homogeneous system [28% was
generalized to heterogeneous systems in [23]. Adash run of
the iteration, the difference becomes smaller; andary of
number of iterations exists for the difference héag the limit.
Networks with different topologies were studiedclsias: torus,
grid, and hypercube. In a system ad-dimensional hypercube, a
policy can converge ird+1 iterations. These load balancing
policies are also studied under the environmentrevHeads
dynamically arrive to nodes.

These policies are mainly studied for massivelyalbar systems,
e.g., distributed memory multiprocessor system, parallel
processing system, whose processors are tightiyemed to
provide high speed computing power. In these systetne
number of components could be as large as thoushodgver,
the domain of neighbors for each component is snidiese
systems adopt diffusive load balancing policieduity use the
capacity of their resources and further speed uppctations
without the managing of a central controller.

3. eQuus

As our load balancing will be based on an eQuus$eByswe
introduce it here. eQuus is a structured P2P sydiased on
clusters, where its nodes are organized into aleistecording to a
proximity metric, and its DHT is constructed amotigese
clusters. The proximity metric could be the geobiamistance,
or the network distance in the Internet which isasured in
number of hops. Unlike other DHT systems, each tetuss
identified by a unique ID. Also, the routing tabke® constructed
based on these IDs. There are uf tmdes belonging to the same
cluster pointed to by an entry of a routing tal®lerode can select

a node from thesknodes to route a lookup message. Meanwhile,

the shared objects belonging to a cluster areaatell among all
nodes in that cluster.

eQuus has a routing algorithm similar to Pastryictviiorwards a
lookup message according to prefix matching. UnBastry, a
node resolves a lookup message by checking ifakh key of the
lookup is located in the range between the ID sélftand its
successor. If this is true, the node returns i@elthe final results.
Otherwise, the node will forward the lookup messtmgéhe next
hop according to its routing table. The number ®&ps of a
lookup procedure is bound I6}(logN),whereN is the number of
clusters in the eQuus.

Nodes in an eQuus system have two levels of commmectintra-
cluster and inter-cluster. At the intra-clusterdewa node connects
with all other nodes in the same cluster. At thteritluster level,

a node has connections wik. nodes in each neighbor cluster
included in the routing table, which provid; redundancy for
the lookup forwarding, as well as for the applioatservices on
top of the DHT overlay. Each node also stores cotior®s to up
to kK nodes in its predecessor and in its successaecuDuring

a lookup procedure, the probability that K.I nodes of an entry
would disappear at the same time is very low.

In addition to the operations in regular DHT sysiemn eQuus
system provides two extra operations dedicatedusters, one is
splitting and another is merging.

e Splitting: When a new node joins the eQuus system,
joins a cluster which is the closest to it on thesen
proximity metric. Its joining only changes the
membership of this cluster. When the size of thstelr
reaches an upper limit, the cluster will start &ttipg
operation, where half of the nodes will be in a new
cluster, and another half will stay in the origichister.
The new cluster takes over half of the hashed keys
which are close to the predecessor of the origihedter
on the ring. Also, it is identified by an identifin the
middle of two original identifiers. The new cluster
updates entries of its routing table by searchamgtfem
in the overlay.

* Merging: When the size of an eQuus cluster reaehes
lower bound, the cluster will start to merge wits i
predecessor, where all of its nodes join its presisar,
and its own cluster ID disappears. After mergirte t
resulting cluster takes over all of hash keys ofhbo
clusters. Also, the clusters having the mergedtetuss
an entry in their routing tables will be notifiedrfits
departure.

With this architecture, only when node joining agaving
accumulate to a certain degree, clusters will égpee merging
or split, and connections associated with thesstets will be
updated. From this point of view, an eQuus is rolansl resilient
to churn.

4. Diffusive load balancing for a clustered
P2P networks

The load balancing in a clustered P2P system haslawels:

intra-cluster, i.e., loads among nodes in a givéuster are

balanced, and inter-cluster, i.e., loads amonguifft clusters are
balanced. As research has already intensively eudira-cluster
load balancing, we propose to apply diffusive Idedancing in

the system at the inter-cluster level based omaiseimption that
intra-cluster load balancing has been implementeidé each
cluster.

We adopt node movements instead of object movefoerbad
balancing. Without virtual servers, load balancitigrough
moving objects can only be realized between corisecalusters
in the clustered P2P system; in this way, diffudoed balancing
would converge only slowly. With load balancingahgh moving
node, the overhead of maintaining data consistanayng a large

number of nodes in different clusters for movingeats, and the
updating of routing tables in the network is avadide

4.1 Choiceof theload index: available
capacity

A dynamic load balancing scheme identifies the esysstatus
according to a load index at each node; a loadxirsteuld
correctly reflect the amount of loads at a node] &om this
index, the performance of a node could be evaluatdths been
reported that the choice of a load index has elaffgct on the
performance of a system [24]. CPU queue lengtheiserplly
preferred as a load index [25, 7, and 24] becaubas a strong
correlation with the mean response time of taskshat node.
Other load indexes include utilization, requespmse time,
available capacity.

The utilization of nodes can be used as load indexa
homogeneous system where the maximum capacitite ofodes
are the same: when two nodes have the same udilizatheir
request-response times are the same. Howeveistha the case
in heterogeneous systems. CPU queue length canseg in
heterogeneous systems; but it is particularly bistefor load
sharing which uses static thresholds to determihether load
should be exchanged. Request-response time is wsed
dispatching requests among nodes by load sharhiregrez as well.

We adopt the available capacity of a node as thé iodex of our
load balancing scheme. It has been proposed inf¢2 Halancing

CPU and disk storage usage in a digital librangoAl[28] uses a
metric derived from available capacity to balancndwidth

usage in a network during the routing of servicpiests.

We use a M/M/1 queuing model to show that, the ayer
response time at a node is the reverse of theadaitapacity of a
node; this means that, when two nodes have the samilble

capacity, even if they have different maximum cépes; the

mean response times for a given request will beséimee at those
two nodes. We use the notations in [26] to definedquation (1),
where we have the average response Hrliethe service rate of a
node ~ , the arrival rate of a nocA4 , and the utilization of a

node @ . As the service rate of a node is the maximum resrob

requests it can process per time unit, and thearrate is the
number of requests that are processed per time weitan say
that the maximum capacity of a node is its servate, and the
used capacity is its arrival rate; as a result, utikzation of a

node, which is the ratio ¢4 and ,u’ becomes the ratio of its
used capacity to its maximum capacity. We have

E[r] =1/ @-2) =1/ (MaximumCapacity — UsedCapacity)
=1/ AvailableCapacity (2)

Because of this directly relationship between tbgponse time
and the available capacity, we use the latter ad Index. Since
we assume that the nodes in a cluster are loaddzda we may
also assume that they have all the same availaplgcity within a
given cluster. With inter-cluster load balancinge tavailable
capacities of the nodes in all clusters will beseloto their
average. We do not differentiate requests into ipieltclasses
here.

We can calculate the available capacity of a nodk aquation
(2) after determining its maximum capacity by benalk tools

and its utilization by performance measurementenTlthe mean
available capacity of the nodes in a cluster isidld index of the
cluster; by this load index, load balancing procedwill make
decision on node movement, and consequently, the ilcdexes
among clusters will be changed in the directiorapproach the
system average.

AvailableCapacity = MaximumCapacity * (1utlization) 2)

4.2 Diffusiveload balancing mechanisms

among clusters

Using available capacity as load index, each dlusézatively

runs a diffusive load balancing procedure whichntdies the

state of its own as well of its neighbors, and msalecisions
concerning possible load movements with these heigh We

consider three schemes here: directory-initiatedder-initiated,
and receiver-initiated; they differ in thdipcationpolicy. We use
the traditional meaning of sender and receiver:hemender is a
node will transfer its load out, and a receivel wansfer load in.
In the directory-initiated scheme, when a clustensr the

procedure, it locates the senders and receiversn@mits

neighbors; with sender-initiation or receiver-iatton, it locates a
receiver only when it is sender or a sender onhemwti is

receiver, respectively.

We describe in the following the diffusive load dating
procedure in terms of four phases:

« LB triggering the execution of a load balancing
procedure is triggered by a timeout event or aestat
change event in a cluster. There is a time duration
between two consecutively runs of the procedurd, an
this duration is pre-configured. The procedure I a
activated when a cluster changes its state, elithbe a
sender or to be a receiver.

e Load determination First, the cluster determines its
own load status as well as the load status of its
neighborhood through sending probing messagesto it
neighbors, and waits for responses from them; bqaro
cluster responds with its load index.

. Decision: A parameter, called bound, is used to
determine whether a cluster is considered overibane
under-loaded. First the load average is calculiedll
the clusters in the neighborhood. Then the upper an
lower load thresholds are calculated by the formula
threshold = average-load-index * (1 +/- bound). The
bound is given in percentage of the average load. A
cluster is a candidate receiver (sender) of loats ibad
index is smaller (larger) than the lower threshditde
purpose of the decision procedure is to identifg on
several receiver-sender pairs and send a loadférans
request to the receiver of each pair, including as
parameters the ID of the selected sender (whidhds
target for the node movement) and the amount af iba
requires to reach the load average (called required
capacity). The details of the decision procedures
depends on theocationpolicy:

Directory-initiated: the cluster identifies one or several
receiver-sender pairs, as appropriate.

Sender-initiatedif the cluster is a sender, then it tries
to identify a corresponding receiver in its neigiimmd.

Receiver-initiatedif the cluster is a receiver, then it
tries to identify a corresponding sender in its
neighborhood.

¢ Load transfer After a receiver cluster receives an
instruction of node movement, it will select nodiesn
its own, delete them from its membership list, deid
them join the sender cluster. It is important thtee

node movement should not cause the state of these

clusters to be changed to the opposite, e.g., a@erun
loaded cluster becomes overloaded, or, an overtbade

cluster becomes under-loaded. A receiver can only

transfer out the portion which is over the mear ae
call it transferable capacity; in order to avoidisth
situation, the transferred portion should be clmséhe
smaller one of the required capacity and the teaable
capacity.

5. Simulation and Discussion

We have built a simulation program for evaluatinge t
performance of the diffusive load balancing procedulescribed
above. Also, we compared them with a central dimgcscheme,
where a single directory collects status informatid all clusters

in the system and makes inter-cluster load balandecisions

using the same kind of decision criteria based aarmmand

threshold values. As we are interested in the mdiffees between
these different policies, such as their rates afveogence, the
effect of the threshold parameters and the impéatharn, we

have not taken into account the time and cost ofsage

transmission and node movement (at the currentestdgour

studies); in our simulation, the LB procedures lné different

clusters work sequentially in a random order. V@ @ssume that
the capacity lost during node movement is negl&ibl

In our simulation study, we assume that a cluses s own
intra-cluster load balancing and the load indexestlae same at
all of its nodes. To show the speed of load batajmcbnvergence,
we assume in our simulation an initially unbalanckeéd
situation, were the total available capacity ofat#nt clusters is
uniformly distributed from the lowest value: 0 teetmaximum of
a cluster. Hence, the load index of a cluster camldrived from
dividing its total available capacity by the numlzérits nodes.
We study the system with fixed (but heterogenetadic loads
for the different clusters and we assume that tees within a
cluster have the same maximum capacity (10) heterbgeneous
node capacities are considered below. Figure 2(aniexample
of the histogram of load among clusters before Ibathncing,
where the load indexes of the clusters are digeibletween 0
and 10.

For the purpose of measurement, we insert timetgairio the
simulation, and the time duration between two coaee points
is a measurement round; in one round, each clusterthe load
balancing. In aLB decisionphase, a cluster could identify its
neighborhood as balanced according to the critésied in
previous section; in this case, no node movementldvoccur.
When there is no node movement among all neightoatha the
last round, the system is said to be globally ba@dnand the
simulation will be stopped. In the real system, tfeprocedure

will run from time to time to handle the possiblebalancing of
the system.

5.1

nodes

We display the histogram of the load index amongstelrs after
running of LB procedure in Figure 2. The system &as000
nodes; the average size of a cluster is configage8 (the number
of nodes in a cluster then ranges between 4 andntier the
organization of eQuus), and the load balancingund is
plus/minus 20% of the mean. Figure 2 (b) — (e) sttmwesults of
these four schemes. The figures show the numbelusfers as a
function of the load index when the system got ithte balanced
state (as defined above). Except the receivemaigitsicheme, these
schemes balance the load tightly around the meahespecially,
there is no heavily loaded cluster in the systeime Tirectory-
initiated scheme has a histogram similar to thetraémlirectory
scheme, where there is a spike existing near ttenmaith the
sender-initiated and the receiver-initiated schethesoad index
of the clusters is more spread between the lower @oper
thresholds. In the receiver-initiated scheme, astelu makes
decision on node movement only when it identifieself as a
receiver. In the case that a cluster is not a vecginode
movements will not occur in its local domain, evemen there are
overloaded clusters in the domain. This is theaeaghy with the
receiver-initiated scheme some under-loaded clsiségnain.

L oad balancing with homogeneous

140 T T T T T T T T T
beforeBalancing ———
120 R
100 B

80 - -

number of cliques

60 —

40 | 4

20 F -

0 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11
mean availale capacity

@)

12

140 T T T T

T T T T T T
central directory ———
120 R

100 y

number of cliques

60 - -

40 g

20 -

0 1 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11
mean availale capacity

(b)

12

140 T

direct:)ry—ihitiatled LT
120 B

100 y
80 - —

60 - -

number of cliques

20 - E

O 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12
mean availale capacity

(©

140 T T T T T T T T
sender-initiated ———
120 R
100 - E

80 - E

number of cliques

40 - g

20 - E

O 1 1 1 1 1 1 1 | 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12
mean availale capacity

(d)

140 T T T T

T T T T T
receiver-initiated ———
120 1

100 —

number of cliques

60 —

40 -

0 1 1 [1
0O 1 2 3 4 5 6 7 8 9 10 11 12

mean availale capacity

(e)

Figure 2. The histogram of loads among cluster s before load
balancing (a), and after load balancing, (b) central directory,
(c) directory-initiated, (d) sender-initiated, (€) receiver-
initiated

From Figure 2, we can see that all these schemeglobally
balance the load indexes among clusters in theesyshrough
balancing their neighborhood. Next, we give someneical
results about these schemes. Table 1 provides aason for
the standard deviation (std. dev.) of the load xntlee delta of the
load index which is defined as: (mean — minimumgme 100%,

the rounds of running a scheme to achieve globanbang, the
total number of node movements, and the numbeplits sand
merges that occurred during the balancing proceduiteese
values are the average taken from ten experimentas for
different bounds and different decision policies.

Table 1. Comparison of load balancing results

20% 50%
CD DI SI RI CD DI SI RI

Std. dev. 1.033 0.709 0.91! 1.098 2.28 2.028 2.1762.13
Delta. (%) 19.63 19.28 25.14 62.3 49.92 47.95 57/3456.18

rounds 4.3 11 3.1 4.9 35 15 2.7 3
Node mv. 1680 1942 1695 201, 604 758 581 713

splits 180 219 200 210 63 85 68 76

merges 81 126 123 81 7 33 35 7

CD: central directory, DI: directory-initiated, Slender-initiated,
RI: receiver-initiated

With different bounds configured in tHeB decisionphase, they
are all able to balance the load indexes to thenpteawvever, they
have different results. The central directory scheés an ideal
scheme where the delta of the load index is mastecto the
bounds in both cases; meanwhile, it reaches thenbedl state
with smaller number of node movements. A largertibcauses a
larger delta of load indexes; in this case, schecagsapproach
the balancing state fast, i.e., the number of reuncbe balanced
with a bound of 50% is less than that for a bourfid2@%.
Compared with other schemes, the directory-iniiaseheme
spends less rounds but has more node movemenbalfmcing
the load indexes with a smaller delta, which intisahat its fast
convergence is based on more load balancing dasisind node
movements. The values of the table confirm the gtkme of the
receiver-initiated scheme, already indicated irureg2, for which
the minimum load index is further away from the maxm;
furthermore, the receiver-initiated scheme usesemaunds.

52 Impact to Churn

The load balancing procedure causes node movenamis
introduces extra churn into the system. Churn ingp#us peer-
to-peer system at two levels: intra-cluster andriatuster. At the
intra-cluster level, the departure of an existingl@ or the arrival
of a new one only impacts the cluster membershipagement.
At the inter-cluster level, such changes may cahsesplit and
merge of some clusters; in which case the routaides of the
clusters must be updated. The frequency of splitk raerges is
related to the frequency of arrival and departdneogles, and also
the average size of the clusters. The node movender to load
balancing have a similar impact at the intra- antkricluster
level.

In order to understand the dynamics of our loadarEhg
schemes, we display in Figure 3 the number of modeements
(a), the number of splits (b), the number of mer¢es the
standard deviations of the load index (d), anddéka between
the minimum and the mean load index (e) as a fanctif the
number of rounds. The simulator is configured witle same
parameters used in Figure 2.

Initially, the load indexes at clusters are dispdrin the range
from (0, 10) as seen in Figure 2(a) with large déad deviations
and deltas. During each round of the load balanpiragedure,
the standard deviation and delta of the load insledecome

smaller; in fact, most of the changes occur dutirgfirst round.
The directory-initiated scheme makes 99% of itsenowvements
during the first round; while the sender-initiateud the receiver-
initiated schemes only move about 90%. Also, thesatiory-

initiated scheme reduces the delta most quicklynduthe first

round (Figure 3(e)). Most splits and merges (Fidg(t® and 3(c))
of clusters occur during the first round, corregfing to the large
portion of node movements (Figure 3(a)). After flst round,

there are still some node movements, and changekeofoad

indexes can be observed from Figure 3(d) and 3(e).

If we associate the load status at each roundgar€i3 with the
load state of the system, the initial status cduddseen as an
extremely unbalanced state and the final statimnced. Figure
3 is also a picture showing the migration of systeam the
unbalanced to the balanced state.

T T T T T
central directory —+——
directory-initated -
sender-initated ---
receiver-initiated -

2000

o %

1500

1000

Number of Node Movements

500

0 I N & & & I I
o 1 2 3 4 5 6 7 8 9 10
Iteration round

@)

250 T T T . — : ;
central directory —+——
directory-initated ---x---

L sender-initated ---%--- |
£ 200 receiver-initiated -
[=3
2]
> 150 | i
[

e}
IS
=}
S 100]
50 H .
O 1 »‘I/ g il &+ &+ 1 1

o 1 2 3 4 5 6 7 8 9 10
Iteration round

(b)

T T T T T T
140 + central directory —+—
directory-initated ---x---
sender-initated ---*---
receiver-initiated 8-

120

100

80

number of merges

60

40

20

0m——L S S —
o 1 2 3 4 5 6 7 8 9 10
Iteration round

(©)

T T T T T

central directory —+—
directory-initated ---x---
5F sender-initated ---*---
receiver-initiated -

Standard deviation of load index

#
[ua]
[}
1

Iteration round

(d)
8 T T T T T T T T T
central directory —+—
7F directory-initated ---x---
sender-initated ------
6 receiver-initiated 8- |

Delta between minimum and mean

0 1 2 3 4 5 6 7 8 9 10
Iteration round

(e)

Figure 3. The status of the system at the end of each iteration
round: (a) number of node movements, (b) number of splits,
(¢) number of merges, (d) standard deviation of load index, (€)
delta between the minimum and the mean load index

5.3 Load balancing with heterogeneous

nodes

As the nodes in a P2P system have heterogeneoasityajhe
Selection policies of the load balancing schemes should be
modified: when a scheme selects a node for a regeivshould
considers the required capacity for the sendee>r the mean

load index, and pick a node to be transferred lgagimaximum
capacity close to it; we call this a policy with peaity

consideration. Through such policy, the number of node
movements to achieve the balanced state wouldcheed.

We have configured the simulator with nodes hawagacities in
the range [10, 5000] with a Pareto distributionpghas 2, and
scale as 100 [16]; the other parameters are the aarfor Figure
2. Table 2 shows the load balancing results ofethve® different
selection policies: (a) policy with capacity coresigtion and (b)
with random selection of nodes. As the directoiijiated scheme
works best among these diffusive load balancingeses, we
only compare it with the central directory schemehis and the
next subsections.

We see from Table 2 that the trends observed ionaolgeneous
system remain present in heterogeneous systems, the
directory-initiated scheme uses a smaller numberoohds to
reach a balanced state with more node movememSetieiver-
initiated scheme is left with some overloaded @rtstwhen the
load balancing procedure stops. Furthermore, timebeua of node
movements is reduced with capacity consideratisncampared
with random node selection. For instance, in theeatiory-
initiated scheme, the movements are reduced by 208s
indicates that selecting a node with its maximunpacity
matching to the required capacity is superior todoamly
selection.

Table 2. Comparison of load balancing results with random
and capacity consideration policy

random Capacity
CD DI CD [n]]

Std. dev. 5.98 4.5 5.5 4.37
Delta. (%) 19.45 20.56 19.92 19.5

rounds 4.8 1.6 4.4 1.6
Node mv. 1722 2011 1204 1645

split 182 213 128 181

merge 90 119 28.4 83

CD: central directory, DI: directory-initiated

54 Impact of cluster sizeto LB resultson

churn

As the load balancing procedure causes churn fi@de
movements) in the system, we compare
performance of the load balancing procedure inesystwith

different average cluster sizes. In a system vaithd cluster sizes,
the probability that a given node movement leads teplit or

merge of clusters is smaller than in systems witialer cluster

sizes. Therefore we expect that load balancingoiereffective in

systems with larger average cluster sizes.

Table 3 shows a comparison for three average clsges. The
simulation is based on similar parameters as fdslel2 with
heterogeneous capacities and node selection baseshpacity
consideration; in this case, the simulation is mdosed to the
real world. The data are aggregated from 10 exmarimuns. We
see that for systems with larger cluster sizesntimaber of node
movements is reduced, and the numbers of splits rmedjes
relative to the total number of cliques in the eystare also
reduced. The table shows that there are fewer médrgppened
during the running of the load balancing procedukecluster

in Table 3 the

merges itself with its consecutive cluster whensitze reaches a
lower limit. When the load balancing procedure rubhseduces
the loss of the capacity due to departing nodear(ghthrough
moving nodes from other clusters. From this poihtiew, the
load balancing procedure is counter-balances ch8mce we
have run our simulation without churn, we have exilored this
benefit of load balancing. This point requires Hiert study with a
dynamic scenarios including churn.

Table 3. Comparison of network dynamicsfor different
average sizes of cliques

8 16 32
CD DI cb DI CcD DI
Delta. (%) 19.92 19.5 19.92 18.5 19.94 19{1
rounds 4.4 1.6 3.9 1.4 3.9 1.4
Node mv. 1204 1645 1001 132 944 1168
Split (%) 14.1 20.0 12 17.13 9.8 14.
Merge (%) 3.14 9.1 15 5 15 2.9

CD: central directory, DI: directory-initiated

6. Conclusion

Load unbalance in a P2P system is caused by tleeodgeneities
of node capacities and the popularity of their mes: Also, churn
(dynamic node arrival and departure) could charye Ibad

distribution among nodes and introduce randomly alariced

situations. In a clustered P2P system, the arawudl departure of
nodes changes the capacity of the clusters andtaffthe

performance of the services they provide. In ofderemediate
the unbalanced load situations, due to any reaserpropose to
move nodes from clusters with low load to clusteith high load

in order to equalize the load situations of thes@ts in the P2P
system. It is clear that some kind of overheadraztrbe avoided.

[16] proposed a distributed directory architectuier load
balancing in a P2P system; however, this inducés exetwork
connections from nodes to directories. [18] progose tree
hierarchy for aggregating resource information andnaging
resources; but this introduces extra overhead faintaining the
tree. Diffusive load balancing [21] simplifies thpeocedure by
achieving a global balance through local balangr@redures. It
does not require extra management connections amtenance
infrastructure; this improves the efficiency of oasce
management in P2P systems. In the diffusive loaldnioang
scheme described in [20], the nodes are organigedliaked list
and a node balances its load with its two conseeutgighbors.
In order to increase the speed of global convergeaskip list is
introduced to maintain load information about nodesother
parts of the linked list; but this introduces extraerhead for
managing the list.

Our diffusive load balancing procedure for clusteR2P system
is similar to [20]. However, it uses all those ¢&rs that are
included in the routing table as neighborhood ajven cluster.
Because of the hierarchical structure of the rautiables, this
includes clusters throughout the cluster namingaptherefore
we get relatively fast global convergence. The oHdvantage is
that we can directly use the neighborhood structuovided by
the existing P2P overlay structure, which redubesoverhead.

Our diffusive load balancing procedure equalizeadl@among
clusters based on the available capacities of timies, which is
taken as our load index. Since the available capaidirectly
associated with the mean response time of a noslgstam load-
balanced based on available capacity has a unifesponse time.

Our simulation compares the performance of foufedéht load
balancing schemes: a scheme using a centralizexttlgtirand
three distributed schemes with different decisioolicies:

directory-initiated, sender-initiated, and receiirétiated. Our
simulation results show that the directory-initéhteolicy is the
best distributed decision policy. It results in htigload

distributions, similar to those obtained by thetcaired scheme.
It can also quickly respond to changes of the lioaeéx within a
small number of rounds, which makes it be a supetbeme in
dynamic P2P systems.

Our load balancing procedure moves nodes fromHligbaded

clusters to heavily loaded clusters; this movemeads extra
churn to the system. We also show that this chambe reduced
through adjusting system parameter; for examplefigored with

a larger average cluster size, the number of noaleements and
cluster splits is reduced. However, the dynamicsadditional

churn introduced by load balancing, in the presexideaditional

churn through arriving and departing nodes, reguiferther

exploration. We will also study the effect of rungithe load
balancing procedure concurrently on several clastgthin the

system.

7. Reference:

[1]: T. Locher, S. Schmid, R. Wattenhofer, "eQuAsProvably
Robust and Locality-Aware Peer-to-Peer Systep®p pp. 3-
11,Sixth IEEE International
Computing (P2P'06)2006

[2]: J. Gray, P. Helland, P. O'Neil, and D. Shasfiae dangers
of replication and a solution.” IRroceedings of the 1996 ACM
SIGMOD international Conference on Management oftaDa
(SIGMOD '96), pp. 173-182.

[3]: E. Pitoura, B. Bhargava, “Data consistencyiritermittently
connected distributed systemiFEE Transactions on Knowledge
and Data Engineeringyol.11, no.6, pp.896-915, Nov/Dec 1999

[4]: O. Kremien, J. Kramer, "Methodical Analysis éHaptive
Load Sharing Algorithms,IEEE Transactions on Parallel and
Distributed Systemsol. 03, no. 6, pp. 747-760, Nov., 1992

[5]: T.L. Casavant, J.G. Kuhl, "A taxonomy of schédg in
general-purpose distributed computing systems|EEE
Transactions on Software Engineeringl. 14, no. 2, pp. 141-
154, Feb., 1988

[6]: N. G. Shivaratri, P. Krueger, M. Singhal, “Labaistributing
for locally distributed systemsComputer vol.25, no.12, pp.33-
44, Dec 1992

[7]: S. Zhou, “A Trace-Driven Simulation Study &fynamic
Load Balancing,”IEEE Transactions on Software Engineering
vol. 14, no. 9, pp. 1327-1341, Sept., 1988

[8]: M. Livny, M. Melman, “Load balancing in homogeous
broadcast distributed systems,” Broceedings of the Computer
Network Performance SymposiudmCM, New York, NY, 47-55,
1982

Conference on Peer-to-Peer

[9]: D. L. Eager, E. D. Lazowska, and J. Zahorj#¢comparison
of receiver-initiated and sender-initiated adaptivad sharing,”
SIGMETRICS Performance Evaluation Revi8y 2, Aug. 1985

[10]: M.J. Zaki, W. Li, S. Parthasarathy, "Custoedzdynamic
load balancing for a network of workstationsFith IEEE
International Symposium on High Performance Disittédal
Computing (HPDC-5 '96)p. 282, 1996

[11]: S. Zhou, X. Zheng, J. Wang, and P. Delisldtdpia: a load
sharing facility for large, heterogeneous distrédaitcomputer
systems,”Software-Practice and Experienc23, 12, Dec. 1993,
pp. 1305-1336.

[12]: M.-V. Mohamed-Salem, G. v. Bochmann, and J.Wéng,
“Wide-area server selection using a multi-brokehé#ecture,” in
Proceedings of International Workshop on New Adearaf Web
Server and Proxy Technologi¢rovidence, USA, May 19, 2003.

[13]: S. P. Dandamudi, and K. C. Lo, “A HierarcHidaoad
Sharing Policy for Distributed Systems,” Proceedings of the
5th international Workshop on Modeling, Analysisnda
Simulation of Computer and Telecommunications S8ste
MASCOTS. IEEE Computer Society, Washington, DC,7.99

[14]: J. Byers, J. Considine, and M. Mitzenmach8mnple Load
Balancing for Distributed Hash Tables,” Proceedings of the
2nd International Workshop on Peer-to-Peer Syst€fRIPS
'03), February 2003.

[15]: A. Rao, K. Lakshminarayanan, S. Surana, RrpKand I.
Stoica. “Load Balancing in Structured P2P Systemb)’
Proceeding of 2nd International Workshop on PeePéer
Systems (IPTPS '03)003

[16]: B. Godfrey, K. Lakshminarayanan, S. SuranaKRrp, and
I. Stoica, “Load balancing in dynamic structuredPPgystems,”
INFOCOM 2004. Twenty-third Annual Joint Confererafethe
IEEE Computer and Communications Societiasl.4, no., pp.
2253-2262, vol.4, 7-11 March 2004

[17]: S. Surana, B. Godfrey, K. LakshminarayananKRrp, and

I. Stoica, “Load balancing in dynamic structuredempt-peer
systems,” Performance EvaluationVolume 63, Issue 3, , P2P
Computing Systembjarch 2006, Pages 217-240.

[18]: Y. Zhu, Y. Hu. “Efficient, proximity-aware k&d balancing
for DHT-based P2P systemdFEEE Transactions on Parallel and
Distributed Systems0l.16, no.4, pp. 349-361, April 2005

[19]: A. R. Bharambe, M. Agrawal, and S. Seshanetddry:
supporting scalable multi-attribute range queriés Proceedings
of the 2004 Conference on Applications, Technofgie
Architectures, and Protocols For Computer Commutidca
SIGCOMM '04. ACM, New York, NY.

[20]: P. Ganesan, B. Mayank, and H. Garcia-Molif@anline
Balancing of Range-Partitioned Data with Applicasoto Peer-
to-Peer Systems,” iWLDB, 2004

[21]: A. Corradi, L. Leonardi, F. Zambonelli, Difive Load-
Balancing Policies for Dynamic Application&EE Concurrency,
vol. 7, no. 1pp. 22-31, Jan.-Mar. 1999,

[22]: G. Cybenko, Dynamic load balancing for distiied
memory multiprocessorg. Parallel Distrib. Comput7, 2 (Oct.
1989), 279-301

[23]: B. Monien and R. Preis, Diffusion schemes foad
balancing on heterogeneous networR$eory of Computing
Systemsvol 35 2002.

[24]: T. Kunz, “The Influence of Different Workloddescriptions
on a Heuristic Load Balancing SchemiEE Transactions on
Software Engineeringsol. 17, no. 7, pp. 725-730, Jul., 1991

[25]: D. Ferrari, and S. Zhou, “A load index for rihmic load
balancing,” inProceedings of 1986 ACM Fall Joint Computer
ConferencdEEE Computer Society Press, Los Alamitos, CA, pp.
684-690, 1986

[26]: R. Jain, “The Art of Computer Systems Perfante
Analysis” 1991, John Wiley & Sons, New York

[27]: H. Zhu, T. Yang, Q. Zheng, D. Watson, O. Hbarra, and

T. Smith, Adaptive Load Sharing for Clustered Dagitibrary
Servers. IfProceedings of the 7th IEEE international Symposium
on High Performance Distributed Computinduly 28 - 31,
1998).

[28]: R. Bhaskaran, R.H. Katz, "Load balancing astdbility
issues in algorithms for service compositionfNFOCOM
2003.Twenty-Second Annual Joint Conference of tBEEI
Computer and Communications Societies. |IEEE , yola2, pp.
1477-1487 vol.2, 30 March-3 April 2003

